

Models of Distributed Systems

Message Passing, Queues, Processing and I/O,

Overview

1. Message passing theoretical Model
2. Distributed Computing Topologies
3. Client-Server Systems

– Critical points, architectures, processing
and I/O models

The Message Passing Model

- Modelling and Automata
- Async. vs. Sync Systems
- Protocol Properties: Correctness, Liveness, Fairness,...
- Complexity
- Failure Types

Modeling of Distributed Systems

Process I
State variables

Inbuf

Outbuf

(After: J.Aspnes): A processing function takes the Inbuf Data from other
processes, the internal state variables and computes a new internal state and new
Outbuf data. Communication ist point-to-point and deterministic. A configuration
is the state vector for all processes. Events change configurations into new ones.
An execution is a sequence of configurations and events: C0 e0, C1 e1, C2 e2 ...

Send ->

< - Receive

Ptp primitives:

Synchronous vs. Asynchronous Systems

Synchronous (lockstep): e== event, t== time
e0t0 ---> delivery at t0+1, e1t1 ---> deliv. t1+1, …..

Asynchronous (delayed):
e0t0 ---> delivery at ?, e1t1 ---> deliv. t1+?, …..
Reqs: infinitely many computing steps possible, events
will be eventually delivered.

Synchronous systems have simpler distributed algorithms,
but are harder to build. The reality is async. Systems with
additonal help from failure detectors, randomization etc.

“Eventually”

Does NOT MEAN “perhaps” or “maybe”.

It means “will” happen.

We just don't know WHEN.

http://bravenewgeek.com/from-the-ground-up-reasoning-about-
distributed-systems-in-the-real-world/

Message Protocol Properties

- Correctness: invariant properties are shown to hold
throughout executions
- Liveness/Termination: the protocol is shown to make
progress in the context of certain failures and in a
bounded number of rounds
- Fairness: no starvation for anybody
- Agreement: e.g. all processes agree to output the same
decision
- Validity: for the same input x, all processes output
according to x (Or: there is a possible execution for every
possible output value)

(after: Aspnes).

Complexity of Distributed Algorithms

- Time complexity: the time of the last event before all
processes finish (Aspens)

- Message complexity: the number of messages sent

Message size and the number of rounds needed for
termination are important for the scalability of protocols

Failure Types
- Crash failure: a process stops working and stays down

- Connectivity failures: network failures e.g. causing split
brain situations with two separate networks or node
isolation. Typically the time for message propagation is
affected.

- Message loss: single messages are lost, nodes are up.

- Byzantine Failures: „Evil“ nodes violating protocol
assumptions and promises. E.g. breaking a promise due to
disk failure, configuration failure etc.

All protocols are validated with respect to certain failure scenarios!!

Distributed Computing Topologies

- Client/Server

- Hierarchical

- Totally Distributed

- Bus Topologies

Client/Server Systems

client server

request

response

Request
processing

Clients initiate communication and (typically) block
while waiting for the server to process the request. Still
the most common DS topology.

Hierarchical Systems

Every node can be both client and server but some play a special
role, e.g. are Domain Name System (DNS) server. A reduction of
communication overhead and central control options are some of
the attractive features of this topology.

Client and Server

Totally distributed

Every node IS both client and server. Watch out: peer to
peer systems need not be totally distributed!

Client and Server

Bus Systems/Pub-Sub

Every node listens for data and posts data in response.
This achieves a high degree of separation and
indepencence. Event-driven systems follow this topology.

Client and Server

Client-Server Topologies

- Theoretical Model
- Terminology
- Critical Points
- Architectures (multi-tier, fan-out, offline)
- Processing Models (cores, threads, processes)
- I/O Models (sync, async, reactive,)

Theoretical Model

- Queuing Theory
- Little's Law
- Critical Points
- Architectures (multi-tier, fan-out, offline)
- Processing Models (cores, threads, processes)
- I/O Models (sync, async, reactive,)

See: SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services, Matt Welsh, David Culler, and Eric Brewer

Server

Service policy type Q; (Fifo,
shortest remaining time first etc.

Probability
distribution
for arrivals:
M,D,G

Queuing Theory: Kendall Notation M/M/m/ß/N/Q

Population Size: ß
(limited or infinite)

Probability
distribution
for service
time: M,D,G

Number of
service
channels: m

Wait queue size: N,
unlimited

scheduler

Leave reate

Queuing Theory Terms

Processing
server

Waiting items

Incoming
Requests

Processed
Requests

Feedback

Server/Node

Dispatch discipline

Service time/
utilization

Residence time

Arrival rate

• Server/Node – combination of wait queue and processing element
• Initiator – initiator of service requests
• Wait time – time duration a request or initiator has to spend waiting in line
• Service time – time duration the processing element has to spend in order to
complete the request
• Arrival rate – rate at which requests arrive for service
• Utilization – portion of a processing element‘s time actually servicing the request
rather than idling
• Queue length – total number of requests both waiting and being serviced
• Response time – the sum of wait time and service time for one visit to the
processing element
• Residence time – total time if the processing element is visited multiple times for
one transaction.
• Throughput – rate at which requests are serviced. A server certainly is interested
in knowing how fast requests can be serviced without losing them because of long
wait time.

Generalized Queuing Theory terms after (Henry Liu)

After:
Stallings

Multiserver Queue

After:
Stallings

Multiple Single-Server Queues

From [Hänsch]

E[N]: Erwartungswert aller Requests im
System
C= Prozessoren
M = Bedienrate

From [Hänsch]

From [Hänsch]

Little's Law

The long-term average number of customers
in a stable system L is equal to the long-
term average effective arrival rate, λ,
multiplied by the (Palm) average time a
customer spends in the system, W; or
expressed algebraically: L = λW.

https://en.wikipedia.org/wiki/Little's_law

L = λ * W

Processor

tEntry tExit

contention
sec

λ
=

W = tExit - tEntry

L= ∑ =λ ?

Say that elements in the system equals service units needed. Now we can calculate, whether
our service units are over- or under-provisioned or just about right.

Uses of Little's Law

Shopify receives 833 requests/second.
They average a 72ms response time
They run 53 application servers with a total
of 1172 application instances (!!!) with
Nginx and Unicorn.

http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html. “blocking of application
instances (anything that stops all 1172 application instances from operating at the same time) can cause
major deviations from Little’s Law. Realize you have three levers - increasing application instances,
decreasing response times, and decreasing response time variability. A scalable application that requires
fewer instances will have fast response times and low response time variability.”

Twitter (old)
600 requests/second
180 application instances (mongrel)
About 300ms average server response time

600*0,3 = ca.
180 instances

833*0.072 = ca.
60 instances

http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html

the Pollaczek-Kinchin

formula [26] tells us that, for an M/G/1 queue:

where ρ is the load and C 2 is the squared coefficient of variation of job sizes.

Note: Even with low load the system can experience large delays due to the variation
coefficient! Very heterogeneous workloads kill throughput!

Estimating Queuing Delay

Taken from: Borg, the next generation. https://dl.acm.org/doi/pdf/10.1145/3342195.3387517

Lessons Learned from Queuing Theory

- Request Numbers: Caching
- Batching: Multi-Get API
- Task Sizes and Variability: SLAs, Hejunka

Queuing Theory for Multi-tier Process Networks

A modern application servers performance largely relies on the proper configuration of
several queues from network listening to threadpools etc. Queuing theory lets us
determine the proper configurations (see resources). In general, architectures like above
are very sensitive for saturated queues. Good architectures create a funnel from left to
right and limit resources like max. threads. Caching and batching are directly derived
from queuing theory. Picture from:
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/rprf_queue.html

Reverse
Proxy

Web
Server

App
Server

Database
Server

Disk
Array

Average response time therefore is the sum of
trip average x wait time plus the sum of service
demand iterated across all nodes. Note that all
these requests are synchronous (internally
sequential) and in all likelihood also in
contention with each other – which means that
wait times occur due to contention

Request Problem in Multi-Tier Networks

Large differences in task size cause pipeline stalls between
nodes (case a) and lead to resource starvation within nodes
causing contention and coherence effects (case b)

Case a
Case b

Task Size Problem in Multi-Tier Networks

From Model to Reality

- Latency
- Blocking/locking/Serialization in Service

Units
- Non-Random distributions, feedback effect
- Dead Requests
- Backpressure
- Missing Variables, Coherence Losses

Backpressure Strategies

Drop, Buffer or Scale-up, but do NOT crash your infrastructure. Look at the
response time delays due to more requests on time-sharing systems. Diagram
from: Mantis in Action, Neeraj Joshi, Justin Becker Qcon, 6/12/2015

Critical Points in C/S Systems 1

client server

request

response

Many Clients?

Session state?

Authentication?

authorization?

Privacy?

locate server?

Authenticate?

Load management, delays and bottlenecks, failures in
backend systems, capacity planning problems, network
throughput, security, deployment (global)

Critical Points in C/S Systems 2

client server

request

response

Sync/Async?
Blocking?
Single/
MulticoreCPU-
intensive?
Queues?

Sync/Async?
Speed Up/Down?
Load Balancing?
Queues?

Wrong decisions here can make the difference between 10
req/sec and 80.000 req/sec! Think about the upload of a large
image. Is it going to hurt your architecture?

Bandwidth/latency?

Stateful Server Problem

server

Client
data

+ data locality

+ consistency

- availability

- load balancing

Stateless design puts all data in DB's, caches etc. In case
of failures, this makes programming hard. Stateful
services bring the function to the data – at a price...

client

Terminology 1

Host: A physical machine with n CPU's

Server: A process running on a host, receiving messages , performing
computations and sending messages (not necessarily responses)

Thread: Independent computation context within a process, pre-empted by
kernel (kernel-thread) or yielding voluntarily (application level scheduling)

Multi-Threading: Several threads running within a process context. Either
executed by one kernel-thread switching between threads, or by several kernel
threads running in parallel (multi-core). Always non-deterministic.

Multi-Channel: A thread is able to watch several channels with one system call.
This is typically done by some variant of a select() call and needs good OS
support.

Synchronous processing: A caller calls some function and waits for its results,
doing nothing while waiting.

Terminology 2

Asynchronous processing: A caller calls a function and immediately continues
executing its own code. The called function gets executed eventually and a
callback function is called to inform the caller about the completion. Nothing is
said about who executes the called function.

Parallel processing: Deterministic execution of independent code paths.

Blocking: A thread calls a function that needs time to e.g. get a resource from
disk. The thread can't continue and would block an execution core waiting for
the result. The thread gets “context switched” and a new code path is loaded
and executed by the core. Context switching is expensive.

Non-blocking calls: A caller calls the non-blocking version of a function. If the
function can perform immediately without delaying the caller, it will do so. If
the function would need time to perform its job, it will let the caller return
immediately and tell it, that it would be blocked. The caller can then decide to
do something else and try later again (poll again).

Synchronization: Needed, when threads share data and need to control the
order of access to prevent data inconsistencies

Architectures of C/S Systems

 - multi-tier
- fan-out,
- pipeline (SEDA)
- offline

Multi-Tier System

Process Model?

Request Routing?

I/O Model?

Queue Sizes and Behavior?

Scale Model?

Request Distribution?

Availability Model?

Latency and Response Times?

Performance Data?
Picture: Nate
Berkopec

Large fan-out Architectures at Google

A portal is a typcial “large-fan-out architecture” with long-tail
problems. See how google handles this: Talk by Jeff Dean,
http://static.googleusercontent.com/media/research.google.com/en/
/people/jeff/Berkeley-Latency-Mar2012.pdf

The Costs of Delays

100 sub-calls, 1% delayed, how many calls
will experience a delay?

“Stalls” of any kind are critical in this architecture. What
can we do against hiccups and stalls? Watch out for requests
beyond the 99%ile! (Gile Tene, Azul: How NOT to measure
latency)

Offline Processing

Request
handler

cache async.
loader

DB
pre-load cache
asynchronously

Do not process things at request time that can be delayed. Pre-calculate and
pre-process as much as possible. Fail fast (Netflix..)

Q
ueue

“friend” notifications
Image conversions
Complex queries
Writes

Background
worker

Process Models

Single Thread / Single Core
Multi-Thread / Single Core
Multi-Thread /Multi-Core
Single Thread/ Multi-Process

From: Gunter, Guerillia Capacity Planning

Thread-Level Parallelism

Serial Fraction limits Speed-up

From: Gunter, Guerillia Capacity Planning

Amdahls Law

1

(1 – Parallel Fraction) + Parallel Fraction

Number of Processors

Speedup =

Very soon adding processors does not increase speedup!

From: Gunter, Guerillia Capacity Planning

From: Gunter, Guerillia Capacity Planning

Questions for Process Models

- can it use available cores/CPUs?
- what is the ideal number of threads?
- how does it deal with delays/(b)locking?
- how does it deal with slow requests/uploads?
- Is there observable non-determinism aka race conditions?
- is locking/synchronization needed?
- what is the overhead of context switches and memory?

We are talking request-level parallelism here. Requests won't
get faster but we can handle more of them (throughput).

Adapted from: T.Jones Boost application performance using asynchronous I/O. Think
About threads in this context! Which model needs tons of threads to handle more
Channels?

Reactor pattern Proactor pattern

I/O Models

Java before
NIO/AIO

Polling pattern

 From: [Jones], Blocking Synchronous I/O

 Adapted from: [Jones]. Non-Blocking Synchronous I/O
Allows alternating I/O and other app. processing

Application is polling!

Application is polling!

Application is polling!

 From: [Jones] Blocking Asynchronous I/O (Event loop)

From: [Jones]. True Asynchronous Non-Blocking I/O. How are data moved?
Is application processing interrupted? When is completion signaled? Does
application wait for completion signals? Are data-races possible?

?

Synchronous I/O (blocking calls)

Many threads are required to stay responsive. Many context switches occur and each
thread needs extra memory. Latency hiding through multiple threads see: Aruna
Kalaqanan et.al. http://www-128.ibm.com/developerworks/java/library/j-javaio

Thread
Input

Channel
FileSysOutput

Channel

Wait for client cmd.

Process client cmd, e.g. get file (wait for disk)

Send response to client (Switch on full buffer)

Wait for client cmd.

Switch

Switch

Switch
Switch

Non-Blocking: Reactor Pattern

From: Aruna Kalaqanan et.al. http://www-128.ibm.com/developerworks/java/library/j-
javaio. The downside: all processing needs to be non-blocking and the threads need to
maintain the state of the processing between handler calls (explicit state management vs.
implicit in normal multi-threaded designs).

“Server applications in a distributed system must handle multiple clients that send
them service requests. Before invoking a specific service, however, the server
application must demultiplex and dispatch each incoming request to its
corresponding service provider. The Reactor pattern serves precisely this function.
It allows event-driven applications to demultiplex and dispatch service requests,
which are then delivered concurrently to an application from one or more clients.”

The Reactor pattern is closely related to the Observer pattern in this aspect: all
dependents are informed when a single subject changes. The Observer pattern is
associated with a single source of events, however, whereas the Reactor pattern is
associated with multiple sources of events.”

Reactor Pattern

From: Benedikt Hensle, Reaktive Programmierung

Proactor Pattern

From: Benedikt Hensle, Reaktive Programmierung

Example Node.js Event Loop
var redis = require('redis'), client = redis.createClient();

client.get("mykey", function printResponse(err, reply) { console.log(reply); });

1. client.get sends network packet and yields
2. eventloop sets marker for future response packet
3. network stack receives message
4. eventloop calls client with message.
5. redis client calls callback (printResponse)

From: Juho Mäkinen, Problems with Node.js Event Loop,
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. Excellent explanation of async-single-threaded processing of I/O

Event Loop Request Stalls

From: Juho Mäkinen, Problems with Node.js Event Loop,
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. The EL is busy processing replies and can't deal with new
requests.

Stalls and Long Tails

From: Juho Mäkinen, Problems with Node.js Event Loop,
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop.

Long Processing and NextTick

From: Juho Mäkinen, Problems with Node.js Event Loop,
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. “NextTick” allows yielding within a processing step – which in
turn allows requests being handled by the EL

Computational Complexity and Event Loops

- calculations: partition and use event loop

- Avoid regex-DOS

- use worker-pools (com. Overhead)

- differentiate between I/O and compute worker

- watch out for resource exhaustion and back-
pressure

- don’t do O(n) if n is determined by client input

From: Don’t block the Event Loop (or the
worker pool)
https://nodejs.org/en/docs/guides/dont-
block-the-event-loop/

Concept Exercise

Our troublesome Node service had a fairly straightforward purpose. Digg uses Amazon S3 for storage which is peachy, except S3 has
no support for batch GET operations. Rather than putting all the onus on our Python web server to request up to 100+ keys at a
time from S3, the decision was made to take advantage of Node’s easy async code patterns and great concurrency handling. And
so Octo, the S3 content fetching service, was born.

Node Octo performed well except for when it didn’t. Once a day it needed to handle a traffic spike where the requests per minute jump
from 50 to 200+. Also keep in mind that for each request, Octo typically fetches somewhere between 10–100 keys from S3.
That’s potentially 20,000 S3 GETs a minute. The logs showed that our service slowed down substantially during these spikes,
but the trouble was it didn’t always recover. As such, we were stuck bouncing our EC2 instances every couple weeks after Octo
would seize up and fall flat on its face.

The requests to the service also pass along a strict timeout value. After the clock hits X number of milliseconds since receiving the
request, Octo is supposed to return to the client whatever it has successfully fetched from S3 and move on. However, even with a
max timeout of 1200ms, in Octo’s worst moments we had request handling times spiking up to 10 seconds.

The code was heavily asynchronous and we were caching S3 key values aggressively. Octo was also running across 2 medium EC2
instances which we bumped up to 4.

I reworked the code three times, digging deeper than ever into Node optimizations, gotchas, and tricks for squeezing every last bit of
performance out of it. I reviewed benchmarks for popular Node webserver frameworks, like Express or Hapi, vs. Node’s built-in
HTTP module. I removed any third party modules that, while nice to have, slowed down code execution. The result was three,
one-off iterations all suffering from the same issue. No matter how hard I tried, I couldn’t get Octo to timeout properly and I
couldn’t reduce the slow down during request spikes.

A theory eventually emerged...

Node
server S3

The Danger of Percentiles

From: Juho Mäkinen, Problems with Node.js Event Loop,
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. Only a very high percentile shows how bad the situation at the
long tail really is.

Questions for I/O Models

- Can it deal with ALL kinds of input/output?
- How are synchronous channels integrated?
- How hard is programming?
- Can it be combined with multi-cores?
- Scalability through multi-processes?
- Race conditions possible?

Event-driven programming can become really hard in the
context of multiple cores.

I/O Models and Multi-Cores???

How can Highly Concurrent Network-Bound Applications
benefit from modern multi-core CPUs? By Lucas Crämer

True Async I/O without Locking: IO_uring

https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-
revolutionize-programming-in-linux/

Homework

Read sourcecode of server.java under
Gitlab.mi.hdm-stuttgart.de/kriha/

kriha_examples
And create a sequence diagram for requests
Where would one add
- persistence?
- security?

Resources
• Scaling Ruby Apps to 1000 Requests per Minute - A Beginner's Guide
• by Nate Berkopec, http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html
• David Flanagan, Java Examples in a Nutshell, O’Reilly, chapter 5. Code:

www.davidflanagan.com/javaexamples3
• Ted Neward, Server Based Java Programming chapter 10, Code:www.manning.com/neward3
• Doug Lea, Concurrent Programming in Java
• Pitt, Fundamental Java Networking (Springer). Good theory and sources (secure sockets, server

queuing theory etc.)
• Queuing Theory Portal: http://www2.uwindsor.ca/%7Ehlynka/queue.html
• Performance Analysis of networks: http://www2.sis.pitt.edu/~jkabara/syllabus2120.htm (with

simulation tools etc.)
• Meet the experts: Stacy Joines and Gary Hunt on WebSphere performance (performance tools, queue

theory etc.) http://www-128.ibm.com/developerworks/websphere/library/techarticles/0507_joines/
0507_joines.html

• Doug Lea, Java NIO http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf Learn how to handle thousands of
requests per second in Java with a smaller number of threads. Event driven programming, Design
patterns like reactor, proactor etc.

• Abhijit Belapurkar, CSP for Java programmers part 1-3. Explains the concept of communicating
sequential processes used in JCSP library. Learn how to avoid shared state multithreading and its
associated dangers.

• Core tips to Java NIO: http://www.javaperformancetuning.com/tips/nio.shtml
• Schmidt et.al. POSA2 book on design patterns for concurrent systems.
• Nuno Santos, High Peformance servers with Java NIO:

http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html?page=3 . Explains design alternatives for
NIO. Gives numbers of requests per second possible.

• James Aspnes, Notes on Theory of Distributed Systems, Spring 2014,
www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf

• http://bravenewgeek.com/from-the-ground-up-reasoning-about-distributed-systems-in-the-real-
world/

http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72

