
Designing Distributed Systems

Design for Performance and Reliability
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Goal

We have looked at the services of a distributed operating 
system. Now we need to understand how to fit those 
services into a useful architecture!

Because there are so many different ways to build such 
systems, we will concentrate on large “fan-out” 
architectures which are typical for portals like Google, 
Netflix and Co.
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Overview

• Design principles
• Caching and replication
• Architecture is key
• Architectural validation
• Large Fan Out-Architecture: caching, replication and 

asynchronous requests

• Large Fan-Out Architecture: Performance Optimizations
• Large Fan-Out Architecture: Fault-Tolerance
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Design Principles of Distributed Systems

• Beware of Latency: check buffering and RTTs
• Locality: Carefully co-locate components that interact heavily. 
• Sharing: Do not perform the same work twice or more times. 
• Pooling: re-use expensive resources used in communication (e.g. 

connection/threadpool)
• Parallelize: Design your system in a way that lets you do things 

concurrently. Avoid unnecessary serialization.
• Consistency: Carefully evaluate the level of consistency that is needed 

with respect to caching and replication
• Caching and Replication: Use Prediction and bandwidth to reduce 

latency
• End-to-end-argument: Avoid heavy guarantees in lower-levels
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Know Your No. 1 Enemy: Latency

From: D.Patterson, Why Latency Lags Bandwidth, and What 
it Means to Computing. Latency hides everywhere: nic 
buffers, OS scheduling etc. Bundle and reduce requests!
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Locality Matters!

Order
EJB

host A

Customer
EJB

host B

Item
EJB

host C

host X

Order
EJB

Customer
EJB

Item
EJB

Facade

Example: Enterprise Java Beans introduced local interfaces as an addition in Release 
2.0 – to respect the principle of locality which suggests to concentrate heavily 
interacting objects in one place. Even though there is NO functional difference between 
an item with a remote and a local interface. Do not distribute unnecessarily! 
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Sharing (1): Resources

SAXp

Client

XML parser pool

SAXp.

Object
Pool

Pooling is useful in almost every case – even locally. But see what happens if you run 
XML over http and you create a new parser for every request – and there may be 
MANY requests per second. The profiler is your friend! It will show request counts and 
memory allocations.

SAXp.

SAXp.

SAXp.

SAXp.

getParser()

returnParser()

Monitoring of:
- hold times
- returns
- wait!!
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Sharing (2): Data

Object
X

Client A
object cached by service

X

Service

Distributed applications without caching do not work. Try to minimize backend  
requests while still keeping application logic sane.

Y

getX()

getX()
Object

X

Client B

X
Y
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Sharing (3): Fragments

Client A

Unique Page per User

Cut your information in smaller fragments to find re-usable parts!

Client B

F1 F2

F3

F4

F1

F4

F2

F5



10

Connection Pooling

Connections = ((core_count * 2) + effective_spindle_count)
The calculation of pool size in order to avoid deadlock is a fairly simple resource 
allocation formula:
   pool size = Tn x (Cm - 1) + 1
Where Tn is the maximum number of threads, and Cm is the maximum number of 
simultaneous connections held by a single thread.

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections-
-core_count--2--effective_spindle_count
 (with good Oracle video)

There are a number of caveats behind those heuristics: match server CPU with 
database CPU, no unnecessary blocking anywhere, app threads not holding onto 
connections, measure wait time in pool carefully, check I/O rates with new 
hardware, understand what a “connection” to your storage really IS, watch 
core/thread ratio, etc. 

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections--core_count--2--effective_spindle_count
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections--core_count--2--effective_spindle_count
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More Connections Better?

OLTP Performance - Concurrent Mid-Tier Connections, 
https://www.dailymotion.com/video/x2s8uec
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A Correct Analysis?

Serving Millions of Users in Real-Time with Node.js & Microservices [Case Study]
https://blog.risingstack.com/nodejs-microservices-scaling-case-study/
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Parallelize: Scale Horizontally

Client A load balancer

Dispatcher

A design that respects parallel processing scales much better: here every request can 
get handled by any thread running on any host. Avoid synchronization (wait) points 
e.g. in servlet engines or database connections

request()

request()

Client B

host A

Host B
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Caching and Replication

Client A
Web Server

With caching the caching components bear the responsibility for data validity. In case 
of replication the data source is responsible to keep the replicas consistent and up-to-
date. Make sure you reduce back-end requests!

request()

request()

Client B

host

Host

replicas
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End-to-End Argument

END-TO-END ARGUMENTS IN SYSTEM DESIGN, J.H. Saltzer, D.P. Reed and D.D. Clark*M.I.T. Laboratory for Computer 
Science, http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf. There are two forms of the EtEA: When first invented, it 
 focussed on guarantees, that could only provided at the endpoints of communications. Later it became clear, that in many cases it is 
easier, to have less guarantees on lower levels and to provide more powerful ones at higher levels. This leads to extremely efficient  
and flexible lower layers. But there are exceptions!

“The function in question can completely and correctly be implemented only with theknowledge and help of the application standing at the end points 
of the communicationsystem. Therefore, providing that questioned function as a feature of the communicationsystem itself is not possible. 
(Sometimes an incomplete version of the function providedby the communication system may be useful as a performance enhancement.)”

Intermediate 
Layer

Base Layer

Applic. Layer

User/Developer

CPU cache coherence, DB 
isolation levels, Realtime-
Streaming etc.

Compiler/Languages: 
STM, Memory Models

Special Commands (e.g. Select 
for Update, Synchronized, Begin 
Transaction)

Compensating Behavior

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
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Design-Methodology
• „back-of-the-envelope calculations“ (J.Dean, Google)
• Decide geographical distribution/replication
• Data segregation. Single- or multi-tenancy model, possible 

partitioning along functions, data or customers
• Divide business requirements into REST-like services
• Define SLAs for services. Availability, latency, 

throughput, consistency, durability must be defined.
• Define Security context with IAAA (identity, 

authentication, authorization, and audit) and perform risk 
analysis.

• Define complete monitoring and logging
• Define deployment and release changes, testing 

approaches. You can use fault-tolerant features for 
maintenance.

Partially after: M.Cavage, There's Just No Getting around It: You're Building a 
Distributed System, ACM Queue, April. 2013
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102 Uncomfortable Questions...

Partially after: Todd DeCapua, 102 performance engineering questions every 
software development team should ask, http://techbeacon.com/102-performance-
engineering-questions-every-software-development-team-should-ask

Server sizing
1. How many application servers are needed to support the customer base?
2. What is the optimal ratio of users to web servers?
4. What is the maximum number of users per server?
5. What is the maximum number of transactions per server?
Server tuning and optimization
6. Which specific hardware configurations provide the best performance?
Capacity planning
9. What is the current production server capability?
Browser/user profile issues
21. What do the users do? (These are business process definitions.)
22. How fast do the users do it? What are the transaction rates of each business 
process?
23. When do they do it? What time of day are most users using it?
24. What major geographic locations are they doing it from?
Web server issues
69. How many connections can the server handle?
70. How many open file descriptors or handles is the server configured to handle?
71. How many processes or threads is the server configured to handle?
72. Does it release and renew threads and connections correctly?
73. How large is the server's listen queue?
74. What is the server's "page push" capacity?
75. What type of caching is done?
…................
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Architecture is key

Sooner or later a distributed computing project will need to define the 
following artefacts:

• Information Architecture
• Distribution Architecture
• System Architecture
• Physical Architecture
• Architectural  Validation

This is a question of “pay me now or pay me later” as you will see in the 
following sections
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 Example: Distributed Technologies in a Portal

Application 
Server
Web-
Tier

Application 
Server
EJB
Tier

LDAP 

E-bank 

News

Quotes 

Distributed
Cache

Web
Server

CORBA

RMI
XML-RPC

WebServiceJMS

JDBC

Part of a Portal running on a 
Web Cluster. What is the key 
architectural pattern behind 
this?

Directory

JNDI
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Example: Inpol

The German state police wanted a new IT-System 
„Inpol-neu“. 

The system should store all kinds of crime-related 
data and allow fancy queries in realtime. The owners 
are the states of the BRD.

The federal structure of the German police played a 
major role in this project...

Large projects have their own rules and problems, besides the fact that most of 
them are somehow distributed designs. If you want to survive those projects, 
read „Death march projects“ by. E.Yourdon.
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The large distributed project gone foul

Inpol-neu

Oracle DB

Agil Access-Server

thin
client

fat
client

ultrathin
client

LDAP

corba corba

A fairly standard design. The bottleneck was supposedly the handling of access rights very 
late in the DB using stored SQL. Every user used the same table-schema but runtime DB 
access control filtered out things that a user should not see. User rights were additionally 
complicated by the multi-party character of the project: Every state in the BRD defined 
rules and variables in a special way.

runtime filtering per 
instance (row)!!

Meta
DB

meta
data

(xml)

users
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Key ingredients for desaster

• planned costs >100 Mio. (attracts many „experts“, highly political)
• high daily burn-rate (forces rash decisions)
• overloaded with features
• New technology driven at the limit (XML meta-data approach to cover serious 

differences within customers)
• High scalability requirements: lots of data to be handled, high performance, 

security etc. Especially bad when coupled with latest (immature) technology
• Multi-party support: means too many different requirements and tedious 

project handling.
• Lots of paper pushing while the core assumptions of the whole system stay 

unchallenged (in this case the very late and complex access control in the DB)

Some of these cannot be prevented easily. At least an Extreme Testing 
Approch could be followed to discover architectural flaws early. But it 
seems that it is the structure of those large-scale projects that makes these 
simple and effective countermeasures impossible. Common sense and sanity 
seem to be missing in those projects and you can feel it. Use early 
architectural validation to avoid those problems.
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Architectural Validation

• how does the architecture handle change?  In the inpol-
case deleting data required changes in base-algorithms on 
all levels because a re-arrangement/split of data was 
necessary.

• Where are the main bottlenecks in the system?
• Is horizontal scaling possible (if not, specify approach for 

failover). Remember the facade (component) pattern along 
whose lines machines can be split.

• Is only vertical scalability possible? How far?

architectural validation is the phase in a project where these questions are 
answered. Don‘t start a big project before you have those answers. (Of 
course, if already a big team has been assembled you may not get the 
time to do the basic validation – the results are well known
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Source: Ted Osborne from Empirix

Use of extreme testing to reduce architectural risk
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Large-Scale Fan-out Architectures
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Early fan-out Architectures: Portal project

An enterprise portal combines different applications and data 
sources within an enterprise or across enterprises into a 
consistent and convenient view to clients. 

Portals use many different kinds of infrastructure, protocols 
and services and are therefore distributed applications.

Portal projects are also notorious for their performance and 
reliability problems.

The examples shown are from a real portal project at a large bank. 
They show an early version of what is today called “fan-out 
architecture”. The project was using massively parallel sub-request 
processing – at that time not allowed for applications in a JEE 
container...
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Welcome Mrs. X,
We would like to point you to our
New Instrument X that fits nicely

To your current investment strategy.

News: IBM invests in company Y

Research: asian equity update
Charts: Sony

Quotes: UBS 500, 
ARBA 200

Links: myweather.com,
bank glossary etc.

Common: customize, filter, contact etc.

Messages: 3 new
From foo: hi Mrs. Rich

Portfolio: Siemens,
 Swisskom, Esso,

Common: Banner

Dynamic and 
personalized 
homepage

Dynamic and 
personalized 
homepage
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 Physical Portal Architecture

Portal
DB

LDAP 

Fan-out: 
Back-end 
server

Authentication

The application process is running on a JVM on the Application 
Server. The AS aggregated and integrated various information for 
homepage construction. Initial load-time for homepage: 3 minutes! 
Frequent stalls and crashes!

Application 
Server : 8 
CPU's 

Firewall
Proxies 

Quotes 
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 Exercise: Explain Slow/Fragile Homepage!

Give some possible reasons for the slow and erratic behavior of the 
portal software! 

Performance 
Problems:
-
-
-
-

Reliability/Availability 
Problems:
-
-
-
-
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 Portal Problem Analysis 

• GUI design: Long time with empty page 
• Design: No System Architecture Diagram!
• Performance: Very slow construction of home-page

• Reliability: Frequent stalls and crashes of the application 

• Throughput: 10 users max. with top-notch hardware!
• Team: Little understanding of performance or architecture
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 GUI-Design: General Performance Hints  

• Show something quickly!
• Compress files
• Order downloads for optimal rendering speed 
• Use sub-domains or Http2.0 for high-speed download

• Bundle css/js content
• Optimize images
• Exploit http caching options and infrastructure!
• Use expires header
• Much more

In many cases, client side optimizations are “low hanging 
fruits”, because they have little impact on server side code. You 
can find lots of information from Jakob Schröter or Steve Souder 
on this topic.
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 GUI-Design: Special Performance Hints  

• Design your GUI for balanced and constant load requests

• Split expensive functions across sub-menues

• Allow for asynchronous processing

• Use kill-switches in case of overload and tell users

• Offer different qualities of information depending on system load

• Split business-requests into several requests to improve constant load

• Use “Hejunka” at the client side too..

• Investigate streaming with http2 and http3

• Measure the cost of powerful frontend frameworks carefully...

These measures depend on your application. Ultra-large scale 
sites design GUI functionality around the infrastructure and 
measure request percentiles carefully. 
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System Architecture Diagram

The system architecture captures the main objects and their 
interactions. It describes the processing that happens 
within the system.

Important: Try to capture the essence of the system architecture 
in one diagram. It serves as a communication tool between 
developers and to other groups (management) as well. It also 
makes system inherent problems more visible. 
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Homepage
Action

Portal
DB

Marketdata

Telebanking

Charts

Links

IPOs

TradingIdeas

Welcome

Research

Quotes

News

Telebanking

1

5
4

3

2
Profile

PortalPage Request Flow and Assembly 

News

1. receive request (thread per connection model) 2. lookup user 
profile, 3. sequentially contact DB-tables and back-end server, 4. 
aggregate results and forward to template engine for html 
construction 
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Lessons Learned from SAD

- The overall request time is the sum of all individual calls

- Each delay in an individual call adds directly to the runtime

- Possible  back-end server problems (overload etc.) have a 
disastrous effect on request time

- Long timeout settings would kill response times

- With many concurrent home-page requests, even small 
improvements to sub-requests count!

Without a central architecture diagram, developers cannot 
understand their individual impact on overall performance 
and throughput! JEE at that time did not allow applications 
to create their own threads!
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Request start completion

CPU activity Memory Resources

Java VM memory consumption during complex 
homepage request

At that time, Java GC was having problems with extremely large 
heaps caused by processing stalls in the application (e.g. due to back-
end server problems). GC freqently could not recover and crashed.
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Homepage
Handler

Image
Handler

Synchronous
HandlerGroup

Asynchronous
HandlerGroup

Cache

Portal
DB

Marketdata

Telebanking

Charts

Links

IPOs

TradingIdeas

Welcome

Research

Quotes

News

Telebanking

Servlet Thread  Threadpool Thread

Start()

Wait(timout)

Start()

Cache prefetch

Cache fetch

1

6

5

4

3
2

Profile

Re-Design (parallelized): PortalPage Request Flow and Assembly 

Timeout
protection

Seq. 
Request 
bundling



38

Simplified SAD

Fan-out
(Performance and throughput 

Problems)

Dependencies
(Reliability
Problems)

Frontend
(Rendering
Problems)
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Parallel Calls (fan-out)
• The overall request time is the time of the slowest sub-request

• Each delay in an individual call adds directly to the runtime

• Long timeout settings would kill response times

• Add short timeouts to back-end server calls: prevents piling up of threads on 
unavailable servers and keeps memory heap small.

• Running extremely short requests, e.g. to the portal DB, within their own 
thread, can be counter-productive: No use, if back-end server calls take much 
longer anyway. Solution: Bundling of short sequential requests to save on 
thread overhead! (batching)

• In case of problems with one sub-call: Return an error but do not block the 
whole request waiting (fail fast, use outdated data, have a fallback)

• Prevent all threads getting stuck on one dysfunctional sub-call (bulkhead)

• Temporarily close dead connections (circuit-breaker)
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Engineering For Failure: retries

From: Boris Cherkasky, 
https://medium.com/riskified-technology/engineering-for-failure-
f73bc8bc2e87
BUT: if services decide on too many retries we do a DOS attack 
on our backends!!

https://medium.com/riskified-technology/engineering-for-failure-f73bc8bc2e87
https://medium.com/riskified-technology/engineering-for-failure-f73bc8bc2e87
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Bulkhead Pattern

Asynchronous
HandlerGroup

Quotes

News

Telebanking

5 Threads 
for each 
group!

Asynchronous
HandlerGroup

Asynchronous
HandlerGroup

A back-end server that is unavailable will only cause 5 threads to 
wait for time-out! Go and find more patterns in the Hystrix 
documentation or “Site Reliability Engineering” by Google.
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 Reliability Problems from Dependencies

• Hanging requests keep allocated resources busy and cause 
severe GC which makes system load worse

• Even short timeouts allowed threads to pile-up on dead 
servers (I did not think about splitting async. Thread 
groups into what is known today as “bulkheads” 

• The portal suffered from failing back-end servers a lot
• Do not let the hompage action handler wait long for 

outstandung sub-requests: Today: “Fail-fast” pattern

- Request time was down to 17 seconds but that was still too 
much...

The solution found was a little different to what Netflix does 
today. It is based more on the concept of a group-
communication or failure-detection layer below the application. 
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Missing: Distribution Architecture 
Data
Type

Source Protocol Port Avg.
Resp.

Worst Resp. Down-
times

MaxConn.
Load-
bal.

Security Contact/SLA

News hostX http/xml 3000 100ms 6 sec. 17.00-
17.20

100 client plain Mrs.X/News-SLA

Research hostY RMI 80 50ms 500ms. 0.00-
1.00

50 server SSL Mr.Y/res-SLA

Quotes hostZ Corba/
IDL

8080 40ms 25 sec. Ev.Monday
 1 hour

30 Client plain Mr.Z/quotes-SLA

Personal hostW JDBC 7000 30ms 70ms 2 times 
Per week

2000 server Oracle JDBC dr.
Mrs.W/pers-SLA

Not shown but also important: bandwidth available, number of 
requests planned, distance to device, availability numbers
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Results from the Distribution Architecture 

- several back-end servers show either huge latencies and/or 
  huge variations in response times
- these delays determine the slow home page construction     
  times
- getting to those servers for every request ist nearly              
  impossible
- the variation in response time from dependencies causes 
instabilities in the portal application 

Possible cures for those problems could be client-side load-
balancing as well as more and faster  back-end servers. But MOST 
IMPORTANT: the fan-out layer needs to use reliability patterns! A 
famous framework ist e.g. Hystrix by Netflix 
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Data Aggregation: What, Where and How?

Distribution
Architecture

Service Access
Layer

•Sources, Protocols, Schemata

•Data rates

•Response times (average, over 
day, downtimes)

•QOS (e.g. Realtime quotes)

•Push/Pull

•Security (encryption etc.)

•Handle interface changes

•Disable broken connections

•Add new sources

•Poll and re-enable sources

•Keep statistics on sources

determines
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SAL

Market
Data

service

Portal
DB

A Service Access Layer (SAL) 

The service access layer tracks backend system connections and prevents 
request from blocking on dead connections. It also provides “fail-fast” 
capabilities, thereby saving on system resources!

Appl.

heartbeat
Error 
status

requests
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From SAL to Sidecar

From: http://philcalcado.com/2017/08/03/pattern_service_mesh.html

We could build the functionality into the application (bad) or into the network 
stack (bad as well, think end-to-end argument). The proxy pattern is a rather 
unintrusive and maintainable solution: A true DS middleware

http://philcalcado.com/2017/08/03/pattern_service_mesh.html
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From Sidecar to Service Mesh: Control vs. data plane

From: http://philcalcado.com/2017/08/03/pattern_service_mesh.html

The proxies, together with the control plane or mesh master form a separate 
middleware to control routing etc.

http://philcalcado.com/2017/08/03/pattern_service_mesh.html
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Still Performance Problems...

- Delivering a complete homepage still took too long!

- Everything had been parallelized already!

- lots of CPU and I/O used for dynamic page construction!

Clearly, the effort for a complete HP request was 
considerable. How could we reduce latency and effort?
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Possible Causes for Performance Problems
• No Caching (we did not know what ???) 

• No Pooling (we started pooling heavy objects like connections, threads, 
parsers)

• No Threading (we did parallelize everything. This does not reduce latency 
across machines)

• Persistent session state large or slow (oops, 25k/req. Into DB...)

• High-level Synchronization (we checked our source for “synchronized” 
statements at important bottleneck functions

• Synchronous instead of  asynchronous requests (Java did not support async. 
I/O at that time)

No caching is possible without an information architecture, 
which specifies - from a business point of view - how current 
information has to be! If your infrastructure cannot deliver at 
that rate: “ Business, we have to talk...”
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On Performance, Caching and Architecture

• No Information Architecture existed: Information not 
qualified with respect to aging and QOS.

• Caching possibilities not used (http) or underestimated (20 
secs. Are static!)

• No compression or web accelerators used.

• Architecture not fit to support caching (where and what 
analysis missing)

• Large scale portal needs fragment architecture

• Tactical mistakes: no automatic service time control, no 
automatic DB connection hold control, internal threading 
introduced too early…



52

Caching: Why, What, Where and how much?

Information
Architecture

Fragment 
Architecture

Caching 
possibilities

Throughput/
Performance

•Lifecycle

•Fragmentation

•QOS (e.g. Realtime 
quotes)

•Result Objects/Value 
Objects

•Invalidation mechanism

•Addressing of fragments

•Cache Subsystem QOS 
(e.g. automatic re-load)

Problem 
analysis

The DB is usually 
THE bottleneck in 
a large-scale portal

The DB is usually 
THE bottleneck in 
a large-scale portal

determine
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Information Architecture – Lifecycle Aspects

Country Codes No (not often, 
reference data)

No

News Yes (aging only) No, but personal 
selections

Greeting No Yes

Message Yes (slowly 
aging)

Yes

Stock quotes Yes (close to 
real-time)

No, but personal 
selections

Homepage Yes (message 
numbers, 
quotes)
Question: how 
often?

Yes (greeting 
etc.)

Data / changed 
by

Time Personalization
For every bit of information you 
must know how long it is valid 
and what invalidates it. What 

are the costs to replace it? And 
will replacement bring your 
backends down because of 

millions of concurrent requests? 
Even caching things for one 

second might help!

For every bit of information you 
must know how long it is valid 
and what invalidates it. What 

are the costs to replace it? And 
will replacement bring your 
backends down because of 

millions of concurrent requests? 
Even caching things for one 

second might help!
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Ext.
Service

Request

Back-ends

 Information- and Distribution Architecture 

Service
Access

Aggre
gation

Integ
ration
Inter-
Pret.

Portal
DB

Profile 
server

Ext.
Service

IA defines pieces of 
information to aggregate 

or integrate

IA defines pieces of 
information to aggregate 

or integrate

DA tells portal how to 
map/locate IA defined 

fragments (separation of 
concerns)

DA tells portal how to 
map/locate IA defined 

fragments (separation of 
concerns)
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Controller
Servlet News

Result
Bean cache

Research
Result

Bean cache

Quotes
Result

Bean cache

JSPs

Full-Page
Cache

Per user
Hand
lers

Domain
Object
Cache
(charts,
News,
Market

Data User
Etc.)

SAL

Market
data

Cache

Market
Data

service

Fully 
processed 

Page

Page 
parts, 

processed

Distributed 
cache, raw 

data

Service 
Access 
Layer

Portal
DB

Cache fragments, locations and dependencies (without 
client and proxy side caches) 
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Several Hosts Without Distributed Cache

Internet

Load balancer

Portal DB

App.
Server 1

JVM
cache1

App.
Server 2

JVM
cache2

App.
Server 3

JVM
cache3

App.
Server 4

JVM
cache4

host1 host2

X

XXX X

BTW: ALL external 
sources suffer from 

multiple access!

Item X is loaded several 
times: performance AND 

consistency problem!
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Several Hosts With Distributed Cache

Internet

Load balancer

Dist.Cache

App.
Server 1

JVM

App.
Server 2

JVM

App.
Server 3

JVM

App.
Server 4

JVM

host1 host2

X

Portal DB
X

Ext. 
service
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The need for an asynchronous loader

request cache

async.
loader

DBpre-load cache 
asynchronously

The async. loader decouples synchronous request time from asynchronous 
retrieve time. The is a tight limit on what can be done in a distributed system 
while a user is waiting.
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Fragments

- Complete pages are frequently uniqe to customers. They 
cannot be re-used for others

- Page fragments can be shared and re-used heavily in most 
cases.

- Keeping fragments separately allows a huge reduction in 
back-end requests. 

- The downside: If fragments change, you need a mechanism 
to invalidate dependend pages
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Channel Access Layer

Aggregation layer

Datacache 1

Service Access layer

Storage manager

Normalized 
Request Object

Object 
Dependency 

Graph

IL Fragment Cache

Profile Info

Personalization

Rule Engine

Authorization

Integration layer

Datacache 2

Storage manager

Fragment 
Description 

Instance

Fragment Request

notifies

invalidates

AL Fragment Cache

invalidates

Fragment Based Information Architecture 

Goal: minimize backend access through fragment assembly 
(extension of IBM Watson research) 
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Physical and Process Architecture

The physical architecture deals with reliability issues 
(replication, high-availability etc.) and horizontal and/or 
vertical scalability. 

A projects physical architecture needs to define the scalability 
methods FROM THE BEGINNING because of their influence 
on the overall system architecture (e.g. distributed caching)

A horizontally scalable application can be replicated on more 
hosts. It avoids a single point of failure.

If an application scales only vertically this means that one can 
only install more CPUs or RAM on the single instance of the 
applications host. This type of application has limited 
scalability and availability (a so called HA-application)
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Physical Portal Architecture: Web Cluster
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Physical Architecture Alternatives
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Current Fan-Out Architecture 

Performance and Throughput
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Large fan-out Architectures at Google

A portal is a typcial “large-fan-out architecture” with long-tail 
problems. See how google handles this: Talk by Jeff Dean, 
http://static.googleusercontent.com/media/research.google.com/en/
/people/jeff/Berkeley-Latency-Mar2012.pdf
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Google Search Query Trace

“the Nyquist theorem and limitations of sampling profilers 
today with glimpses of tracing tools from the future”, 
http://danluu.com/perf-tracing/

From:
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Reminder: The Costs of Delays

100 sub-calls, 1% delayed, how many calls will experience a 
delay? 

“Stalls” of any kind are critical in this architecture. What 
can we do against hiccups and stalls? Watch out for requests 
beyond the 99%ile! (Gile Tene, Azul: How NOT to measure 
latency)
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Lessons learned on Latency 
Reduction/Tolerance in FO-Arc.

- Keep response times in a tight percentile but be aware of stragglers

- fight stragglers with backup requests and cross server cancellation.

- Watch for overload at sender when responses come back

- Do NOT distribute load evenly: synchronize background load across machines 
e.g. every 5 minutes.

- Reduce head-of-line blocking (partition large requests)

- Partition data across machines

- Cheat: come back with partial data

- Cross request adaptation

- Increase replication count

- Beware of the incast problem 

from: Jeff Dean, " Achieving Rapid Response Times in Large Online Services"
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Network Incast

PHP Client

Switch

memcache memcache memcache memcache

Many Small Get 
Requests

From Bobby Johnson, 
Facebook

Lot's of concurrent 
responses 
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Rendering

Browser Client
ReactJS

Edge LB/
API Server

Microservice Microservice Microservice Microservice

Rendering on the client

From Amir Jasin,
https://medium.com/swlh/scaling-on-the-cheap-933e46944886#.5e4khjmjm

JSON response

CDN
Static page

JSON response

AWS hosted
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Availability Aspects of Fan-Out 
Architectures 

 The following diagrams are from: 

Fault Tolerance in a High Volume, Distributed 
System, by Ben Christensen (Netflix), 
http://techblog.netflix.com/2012/02/fault-
tolerance-in-high-volume.html
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Failure of a Service

From: Ben Christensen (Netflix), http://techblog.netflix.com/2012/02/fault-
tolerance-in-high-volume.html
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Avoid Getting Stuck!

• Fail Fast: do not wait for resources which have problems.
• Always use timeouts when accessing a service
• Use exponentially decreasing re-tries if needed
• Use alternatives when a service does not work (fallback), e.g. serve 

stale data
• Cache: Retrieve data from local or remote caches if the realtime 

dependency is unavailable, even if the data ends up being stale
• Eventual Consistency: Queue writes (such as in SQS) to be persisted 

once the dependency is available again
• Stubbed Data: Revert to default values when personalized options can't 

be retrieved
• Empty Response ("Fail Silent"): Return a null or empty list which UIs 

can then ignore

After B.Christensen
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Prevent stuck Services: “Bulkheads”

Diag: B.Christensen. Semaphores and Threadpools implement the “bulkhead” 
pattern. Otherwise all available threads will quickly block at an 
overloaded/crashed service

try-acquire()
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Change Processing: Circuit-Breaker

Diag: B.Christensen. Feedback-control is becoming an important feature of 
data-center design! 
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Example

Diag: B.Christensen. Timeouts, pools and retries combine to avoid stuck 
requests.
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Black-Swans

Laura Nolan, what breaks our systems?

https://www.usenix.org/conference/lisa18/presentation/nolan
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Cell-Architectures

- Blast Radius Reduction

- Shuffle Sharding
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Amazon Kinesis Incident 
November, 25th 2020

We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-
EAST-1) Region on November 25th, 2020.

Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several 
other AWS services. These services also saw impact during the event. The trigger, though not root cause, for the event was a relatively 
small addition of capacity that began to be added to the service at 2:44 AM PST, finishing at 3:47 AM PST.

There were a number of services that use Kinesis that were impacted as well. Amazon Cognito uses Kinesis Data Streams to collect and 
analyze API access patterns. While this information is extremely useful for operating the Cognito service, this information streaming is 
designed to be best effort. Data is buffered locally, allowing the service to cope with latency or short periods of unavailability of the 
Kinesis Data Stream service. Unfortunately, the prolonged issue with Kinesis Data Streams triggered a latent bug in this buffering code 
that caused the Cognito webservers to begin to block on the backlogged Kinesis Data Stream buffers.

CloudWatch uses Kinesis Data Streams for the processing of metric and log data. 

CloudWatch Events and EventBridge experienced increased API errors and delays in event processing starting at 5:15 AM PST. As 
Kinesis availability improved, EventBridge began to deliver new events and slowly process the backlog of older events. Elastic 
Container Service (ECS) and Elastic Kubernetes Service (EKS) both make use of EventBridge to drive internal workflows used to 
manage customer clusters and tasks. This impacted provisioning of new clusters, delayed scaling of existing clusters, and impacted task 
de-provisioning. By 4:15 PM PST, the majority of these issues had been resolved.

At 9:39 AM PST, we were able to confirm a root cause, and it turned out this wasn’t driven by memory pressure. Rather, the 
new capacity had caused all of the servers in the fleet to exceed the maximum number of threads allowed by an operating 
system configuration. As this limit was being exceeded, cache construction was failing to complete and front-end servers were 
ending up with useless shard-maps that left them unable to route requests to back-end clusters.

https://aws.amazon.com/message/11201/
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Blast Reduction I: Regions

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction II: Planes

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction III: Availability Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction III: Availability Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction IV: Cells and Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction IV: Cells

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction V: Shuffle Sharding 

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Blast Reduction V: Shuffle Sharding 

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast 
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be
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Exercise: Image Conversion Service

Users: 100,000, requests: 10000/sec max. Availability: 99.9, Latency: 99th 
percentile <500ms with images <1MB (example from M.Cavage, ACM Queue) 
Authentication needed. Do some back-of-the-envelope calculations and draw a 
system architecture!

 

Conversion
service

clients

image

image
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Resources (1)

• Desaster Inpol-neu, Christiane Schulzki-Haddouti, C‘t 24/2001 pg. 108ff. A 
typical case of large-scale, top-notch IT-project gone foul.

• Darrel Ince, Developing Distributed and e-commerce Applications. A very 
good introduction to all the topics necessary for building real-world apps. 
Still rather thin. The content and style comes close to what is covered in this 
lecture.

• David Purcell, Moving to a cluster... www.sys-con.com/story/print.cfm?
storyid=47354 

• IBM Websphere clustering redpaper on www.redbooks.ibm.com
• Luiz Andre Barroso et.al, Web Search for a planet: the google clustering 

architecture. Describes an architecture optimized for read/search access and 
not the typical transaction processes. Compare the machine types and 
numbers with a large web shop.

• Sing Li, High-impact Web tier clustering, Part 1 and 2: Scaling Web services 
using Java Groups etc. (www.ibm.com/developerworks )

• Thomas Smits, Unbreakable Java – A java server that never goes down. 
Describes SAPs approach for creating reliable Java VM environments by 
separating session state from VM using shared memory technology. Also 
processes are separated from VMs

• Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area 
Storage with COPS, Wyatt Lloyd, Michael J. Freedman, Michael 
Kaminskyy, and David G. Andersenz, Princeton University, Intel Labs, 
Carnegie Mellon University



90

Resources (2)

• L.Reith, Concept of data distribution for worldwide distributed services in 
service -oriented architectures, HDM/DaimlerChrysler 2007. 

• http://jroller.com/page/ rolsen?entry=building_a_dsl_in_ruby1
• James Hamilton, http://perspectives.mvdirona.com/2009/10/the-

cost-of-latency/ 
• Steve Souder at Velocity:High Performance Web Sites: 14 

Rules for Faster Loading Pages 
http://stevesouders.com/docs/velocity-20090622.ppt

•

http://stevesouders.com/docs/velocity-20090622.ppt
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