
Designing Distributed Systems

Design for Performance and Reliability

2

Goal

We have looked at the services of a distributed operating
system. Now we need to understand how to fit those
services into a useful architecture!

Because there are so many different ways to build such
systems, we will concentrate on large “fan-out”
architectures which are typical for portals like Google,
Netflix and Co.

3

Overview

• Design principles
• Caching and replication
• Architecture is key
• Architectural validation
• Large Fan Out-Architecture: caching, replication and

asynchronous requests

• Large Fan-Out Architecture: Performance Optimizations
• Large Fan-Out Architecture: Fault-Tolerance

4

Design Principles of Distributed Systems

• Beware of Latency: check buffering and RTTs
• Locality: Carefully co-locate components that interact heavily.
• Sharing: Do not perform the same work twice or more times.
• Pooling: re-use expensive resources used in communication (e.g.

connection/threadpool)
• Parallelize: Design your system in a way that lets you do things

concurrently. Avoid unnecessary serialization.
• Consistency: Carefully evaluate the level of consistency that is needed

with respect to caching and replication
• Caching and Replication: Use Prediction and bandwidth to reduce

latency
• End-to-end-argument: Avoid heavy guarantees in lower-levels

5

Know Your No. 1 Enemy: Latency

From: D.Patterson, Why Latency Lags Bandwidth, and What
it Means to Computing. Latency hides everywhere: nic
buffers, OS scheduling etc. Bundle and reduce requests!

6

Locality Matters!

Order
EJB

host A

Customer
EJB

host B

Item
EJB

host C

host X

Order
EJB

Customer
EJB

Item
EJB

Facade

Example: Enterprise Java Beans introduced local interfaces as an addition in Release
2.0 – to respect the principle of locality which suggests to concentrate heavily
interacting objects in one place. Even though there is NO functional difference between
an item with a remote and a local interface. Do not distribute unnecessarily!

7

Sharing (1): Resources

SAXp

Client

XML parser pool

SAXp.

Object
Pool

Pooling is useful in almost every case – even locally. But see what happens if you run
XML over http and you create a new parser for every request – and there may be
MANY requests per second. The profiler is your friend! It will show request counts and
memory allocations.

SAXp.

SAXp.

SAXp.

SAXp.

getParser()

returnParser()

Monitoring of:
- hold times
- returns
- wait!!

8

Sharing (2): Data

Object
X

Client A
object cached by service

X

Service

Distributed applications without caching do not work. Try to minimize backend
requests while still keeping application logic sane.

Y

getX()

getX()
Object

X

Client B

X
Y

9

Sharing (3): Fragments

Client A

Unique Page per User

Cut your information in smaller fragments to find re-usable parts!

Client B

F1 F2

F3

F4

F1

F4

F2

F5

10

Connection Pooling

Connections = ((core_count * 2) + effective_spindle_count)
The calculation of pool size in order to avoid deadlock is a fairly simple resource
allocation formula:
 pool size = Tn x (Cm - 1) + 1
Where Tn is the maximum number of threads, and Cm is the maximum number of
simultaneous connections held by a single thread.

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections-
-core_count--2--effective_spindle_count
 (with good Oracle video)

There are a number of caveats behind those heuristics: match server CPU with
database CPU, no unnecessary blocking anywhere, app threads not holding onto
connections, measure wait time in pool carefully, check I/O rates with new
hardware, understand what a “connection” to your storage really IS, watch
core/thread ratio, etc.

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections--core_count--2--effective_spindle_count
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing#connections--core_count--2--effective_spindle_count

11

More Connections Better?

OLTP Performance - Concurrent Mid-Tier Connections,
https://www.dailymotion.com/video/x2s8uec

12

A Correct Analysis?

Serving Millions of Users in Real-Time with Node.js & Microservices [Case Study]
https://blog.risingstack.com/nodejs-microservices-scaling-case-study/

13

Parallelize: Scale Horizontally

Client A load balancer

Dispatcher

A design that respects parallel processing scales much better: here every request can
get handled by any thread running on any host. Avoid synchronization (wait) points
e.g. in servlet engines or database connections

request()

request()

Client B

host A

Host B

14

Caching and Replication

Client A
Web Server

With caching the caching components bear the responsibility for data validity. In case
of replication the data source is responsible to keep the replicas consistent and up-to-
date. Make sure you reduce back-end requests!

request()

request()

Client B

host

Host

replicas

15

End-to-End Argument

END-TO-END ARGUMENTS IN SYSTEM DESIGN, J.H. Saltzer, D.P. Reed and D.D. Clark*M.I.T. Laboratory for Computer
Science, http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf. There are two forms of the EtEA: When first invented, it
 focussed on guarantees, that could only provided at the endpoints of communications. Later it became clear, that in many cases it is
easier, to have less guarantees on lower levels and to provide more powerful ones at higher levels. This leads to extremely efficient
and flexible lower layers. But there are exceptions!

“The function in question can completely and correctly be implemented only with theknowledge and help of the application standing at the end points
of the communicationsystem. Therefore, providing that questioned function as a feature of the communicationsystem itself is not possible.
(Sometimes an incomplete version of the function providedby the communication system may be useful as a performance enhancement.)”

Intermediate
Layer

Base Layer

Applic. Layer

User/Developer

CPU cache coherence, DB
isolation levels, Realtime-
Streaming etc.

Compiler/Languages:
STM, Memory Models

Special Commands (e.g. Select
for Update, Synchronized, Begin
Transaction)

Compensating Behavior

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

16

Design-Methodology
• „back-of-the-envelope calculations“ (J.Dean, Google)
• Decide geographical distribution/replication
• Data segregation. Single- or multi-tenancy model, possible

partitioning along functions, data or customers
• Divide business requirements into REST-like services
• Define SLAs for services. Availability, latency,

throughput, consistency, durability must be defined.
• Define Security context with IAAA (identity,

authentication, authorization, and audit) and perform risk
analysis.

• Define complete monitoring and logging
• Define deployment and release changes, testing

approaches. You can use fault-tolerant features for
maintenance.

Partially after: M.Cavage, There's Just No Getting around It: You're Building a
Distributed System, ACM Queue, April. 2013

17

102 Uncomfortable Questions...

Partially after: Todd DeCapua, 102 performance engineering questions every
software development team should ask, http://techbeacon.com/102-performance-
engineering-questions-every-software-development-team-should-ask

Server sizing
1. How many application servers are needed to support the customer base?
2. What is the optimal ratio of users to web servers?
4. What is the maximum number of users per server?
5. What is the maximum number of transactions per server?
Server tuning and optimization
6. Which specific hardware configurations provide the best performance?
Capacity planning
9. What is the current production server capability?
Browser/user profile issues
21. What do the users do? (These are business process definitions.)
22. How fast do the users do it? What are the transaction rates of each business
process?
23. When do they do it? What time of day are most users using it?
24. What major geographic locations are they doing it from?
Web server issues
69. How many connections can the server handle?
70. How many open file descriptors or handles is the server configured to handle?
71. How many processes or threads is the server configured to handle?
72. Does it release and renew threads and connections correctly?
73. How large is the server's listen queue?
74. What is the server's "page push" capacity?
75. What type of caching is done?
…................

18

Architecture is key

Sooner or later a distributed computing project will need to define the
following artefacts:

• Information Architecture
• Distribution Architecture
• System Architecture
• Physical Architecture
• Architectural Validation

This is a question of “pay me now or pay me later” as you will see in the
following sections

19

 Example: Distributed Technologies in a Portal

Application
Server
Web-
Tier

Application
Server
EJB
Tier

LDAP

E-bank

News

Quotes

Distributed
Cache

Web
Server

CORBA

RMI
XML-RPC

WebServiceJMS

JDBC

Part of a Portal running on a
Web Cluster. What is the key
architectural pattern behind
this?

Directory

JNDI

20

Example: Inpol

The German state police wanted a new IT-System
„Inpol-neu“.

The system should store all kinds of crime-related
data and allow fancy queries in realtime. The owners
are the states of the BRD.

The federal structure of the German police played a
major role in this project...

Large projects have their own rules and problems, besides the fact that most of
them are somehow distributed designs. If you want to survive those projects,
read „Death march projects“ by. E.Yourdon.

21

The large distributed project gone foul

Inpol-neu

Oracle DB

Agil Access-Server

thin
client

fat
client

ultrathin
client

LDAP

corba corba

A fairly standard design. The bottleneck was supposedly the handling of access rights very
late in the DB using stored SQL. Every user used the same table-schema but runtime DB
access control filtered out things that a user should not see. User rights were additionally
complicated by the multi-party character of the project: Every state in the BRD defined
rules and variables in a special way.

runtime filtering per
instance (row)!!

Meta
DB

meta
data

(xml)

users

22

Key ingredients for desaster

• planned costs >100 Mio. (attracts many „experts“, highly political)
• high daily burn-rate (forces rash decisions)
• overloaded with features
• New technology driven at the limit (XML meta-data approach to cover serious

differences within customers)
• High scalability requirements: lots of data to be handled, high performance,

security etc. Especially bad when coupled with latest (immature) technology
• Multi-party support: means too many different requirements and tedious

project handling.
• Lots of paper pushing while the core assumptions of the whole system stay

unchallenged (in this case the very late and complex access control in the DB)

Some of these cannot be prevented easily. At least an Extreme Testing
Approch could be followed to discover architectural flaws early. But it
seems that it is the structure of those large-scale projects that makes these
simple and effective countermeasures impossible. Common sense and sanity
seem to be missing in those projects and you can feel it. Use early
architectural validation to avoid those problems.

23

Architectural Validation

• how does the architecture handle change? In the inpol-
case deleting data required changes in base-algorithms on
all levels because a re-arrangement/split of data was
necessary.

• Where are the main bottlenecks in the system?
• Is horizontal scaling possible (if not, specify approach for

failover). Remember the facade (component) pattern along
whose lines machines can be split.

• Is only vertical scalability possible? How far?

architectural validation is the phase in a project where these questions are
answered. Don‘t start a big project before you have those answers. (Of
course, if already a big team has been assembled you may not get the
time to do the basic validation – the results are well known

24
Source: Ted Osborne from Empirix

Use of extreme testing to reduce architectural risk

25

Large-Scale Fan-out Architectures

26

Early fan-out Architectures: Portal project

An enterprise portal combines different applications and data
sources within an enterprise or across enterprises into a
consistent and convenient view to clients.

Portals use many different kinds of infrastructure, protocols
and services and are therefore distributed applications.

Portal projects are also notorious for their performance and
reliability problems.

The examples shown are from a real portal project at a large bank.
They show an early version of what is today called “fan-out
architecture”. The project was using massively parallel sub-request
processing – at that time not allowed for applications in a JEE
container...

27

Welcome Mrs. X,
We would like to point you to our
New Instrument X that fits nicely

To your current investment strategy.

News: IBM invests in company Y

Research: asian equity update
Charts: Sony

Quotes: UBS 500,
ARBA 200

Links: myweather.com,
bank glossary etc.

Common: customize, filter, contact etc.

Messages: 3 new
From foo: hi Mrs. Rich

Portfolio: Siemens,
 Swisskom, Esso,

Common: Banner

Dynamic and
personalized
homepage

Dynamic and
personalized
homepage

28

 Physical Portal Architecture

Portal
DB

LDAP

Fan-out:
Back-end
server

Authentication

The application process is running on a JVM on the Application
Server. The AS aggregated and integrated various information for
homepage construction. Initial load-time for homepage: 3 minutes!
Frequent stalls and crashes!

Application
Server : 8
CPU's

Firewall
Proxies

Quotes

29

 Exercise: Explain Slow/Fragile Homepage!

Give some possible reasons for the slow and erratic behavior of the
portal software!

Performance
Problems:
-
-
-
-

Reliability/Availability
Problems:
-
-
-
-

30

 Portal Problem Analysis

• GUI design: Long time with empty page
• Design: No System Architecture Diagram!
• Performance: Very slow construction of home-page

• Reliability: Frequent stalls and crashes of the application

• Throughput: 10 users max. with top-notch hardware!
• Team: Little understanding of performance or architecture

31

 GUI-Design: General Performance Hints

• Show something quickly!
• Compress files
• Order downloads for optimal rendering speed
• Use sub-domains or Http2.0 for high-speed download

• Bundle css/js content
• Optimize images
• Exploit http caching options and infrastructure!
• Use expires header
• Much more

In many cases, client side optimizations are “low hanging
fruits”, because they have little impact on server side code. You
can find lots of information from Jakob Schröter or Steve Souder
on this topic.

32

 GUI-Design: Special Performance Hints

• Design your GUI for balanced and constant load requests

• Split expensive functions across sub-menues

• Allow for asynchronous processing

• Use kill-switches in case of overload and tell users

• Offer different qualities of information depending on system load

• Split business-requests into several requests to improve constant load

• Use “Hejunka” at the client side too..

• Investigate streaming with http2 and http3

• Measure the cost of powerful frontend frameworks carefully...

These measures depend on your application. Ultra-large scale
sites design GUI functionality around the infrastructure and
measure request percentiles carefully.

33

System Architecture Diagram

The system architecture captures the main objects and their
interactions. It describes the processing that happens
within the system.

Important: Try to capture the essence of the system architecture
in one diagram. It serves as a communication tool between
developers and to other groups (management) as well. It also
makes system inherent problems more visible.

34

Homepage
Action

Portal
DB

Marketdata

Telebanking

Charts

Links

IPOs

TradingIdeas

Welcome

Research

Quotes

News

Telebanking

1

5
4

3

2
Profile

PortalPage Request Flow and Assembly

News

1. receive request (thread per connection model) 2. lookup user
profile, 3. sequentially contact DB-tables and back-end server, 4.
aggregate results and forward to template engine for html
construction

35

Lessons Learned from SAD

- The overall request time is the sum of all individual calls

- Each delay in an individual call adds directly to the runtime

- Possible back-end server problems (overload etc.) have a
disastrous effect on request time

- Long timeout settings would kill response times

- With many concurrent home-page requests, even small
improvements to sub-requests count!

Without a central architecture diagram, developers cannot
understand their individual impact on overall performance
and throughput! JEE at that time did not allow applications
to create their own threads!

36

Request start completion

CPU activity Memory Resources

Java VM memory consumption during complex
homepage request

At that time, Java GC was having problems with extremely large
heaps caused by processing stalls in the application (e.g. due to back-
end server problems). GC freqently could not recover and crashed.

37

Homepage
Handler

Image
Handler

Synchronous
HandlerGroup

Asynchronous
HandlerGroup

Cache

Portal
DB

Marketdata

Telebanking

Charts

Links

IPOs

TradingIdeas

Welcome

Research

Quotes

News

Telebanking

Servlet Thread Threadpool Thread

Start()

Wait(timout)

Start()

Cache prefetch

Cache fetch

1

6

5

4

3
2

Profile

Re-Design (parallelized): PortalPage Request Flow and Assembly

Timeout
protection

Seq.
Request
bundling

38

Simplified SAD

Fan-out
(Performance and throughput

Problems)

Dependencies
(Reliability
Problems)

Frontend
(Rendering
Problems)

39

Parallel Calls (fan-out)
• The overall request time is the time of the slowest sub-request

• Each delay in an individual call adds directly to the runtime

• Long timeout settings would kill response times

• Add short timeouts to back-end server calls: prevents piling up of threads on
unavailable servers and keeps memory heap small.

• Running extremely short requests, e.g. to the portal DB, within their own
thread, can be counter-productive: No use, if back-end server calls take much
longer anyway. Solution: Bundling of short sequential requests to save on
thread overhead! (batching)

• In case of problems with one sub-call: Return an error but do not block the
whole request waiting (fail fast, use outdated data, have a fallback)

• Prevent all threads getting stuck on one dysfunctional sub-call (bulkhead)

• Temporarily close dead connections (circuit-breaker)

40

Engineering For Failure: retries

From: Boris Cherkasky,
https://medium.com/riskified-technology/engineering-for-failure-
f73bc8bc2e87
BUT: if services decide on too many retries we do a DOS attack
on our backends!!

https://medium.com/riskified-technology/engineering-for-failure-f73bc8bc2e87
https://medium.com/riskified-technology/engineering-for-failure-f73bc8bc2e87

41

Bulkhead Pattern

Asynchronous
HandlerGroup

Quotes

News

Telebanking

5 Threads
for each
group!

Asynchronous
HandlerGroup

Asynchronous
HandlerGroup

A back-end server that is unavailable will only cause 5 threads to
wait for time-out! Go and find more patterns in the Hystrix
documentation or “Site Reliability Engineering” by Google.

42

 Reliability Problems from Dependencies

• Hanging requests keep allocated resources busy and cause
severe GC which makes system load worse

• Even short timeouts allowed threads to pile-up on dead
servers (I did not think about splitting async. Thread
groups into what is known today as “bulkheads”

• The portal suffered from failing back-end servers a lot
• Do not let the hompage action handler wait long for

outstandung sub-requests: Today: “Fail-fast” pattern

- Request time was down to 17 seconds but that was still too
much...

The solution found was a little different to what Netflix does
today. It is based more on the concept of a group-
communication or failure-detection layer below the application.

43

Missing: Distribution Architecture
Data
Type

Source Protocol Port Avg.
Resp.

Worst Resp. Down-
times

MaxConn.
Load-
bal.

Security Contact/SLA

News hostX http/xml 3000 100ms 6 sec. 17.00-
17.20

100 client plain Mrs.X/News-SLA

Research hostY RMI 80 50ms 500ms. 0.00-
1.00

50 server SSL Mr.Y/res-SLA

Quotes hostZ Corba/
IDL

8080 40ms 25 sec. Ev.Monday
 1 hour

30 Client plain Mr.Z/quotes-SLA

Personal hostW JDBC 7000 30ms 70ms 2 times
Per week

2000 server Oracle JDBC dr.
Mrs.W/pers-SLA

Not shown but also important: bandwidth available, number of
requests planned, distance to device, availability numbers

44

Results from the Distribution Architecture

- several back-end servers show either huge latencies and/or
 huge variations in response times
- these delays determine the slow home page construction
 times
- getting to those servers for every request ist nearly
 impossible
- the variation in response time from dependencies causes
instabilities in the portal application

Possible cures for those problems could be client-side load-
balancing as well as more and faster back-end servers. But MOST
IMPORTANT: the fan-out layer needs to use reliability patterns! A
famous framework ist e.g. Hystrix by Netflix

45

Data Aggregation: What, Where and How?

Distribution
Architecture

Service Access
Layer

•Sources, Protocols, Schemata

•Data rates

•Response times (average, over
day, downtimes)

•QOS (e.g. Realtime quotes)

•Push/Pull

•Security (encryption etc.)

•Handle interface changes

•Disable broken connections

•Add new sources

•Poll and re-enable sources

•Keep statistics on sources

determines

46

SAL

Market
Data

service

Portal
DB

A Service Access Layer (SAL)

The service access layer tracks backend system connections and prevents
request from blocking on dead connections. It also provides “fail-fast”
capabilities, thereby saving on system resources!

Appl.

heartbeat
Error
status

requests

47

From SAL to Sidecar

From: http://philcalcado.com/2017/08/03/pattern_service_mesh.html

We could build the functionality into the application (bad) or into the network
stack (bad as well, think end-to-end argument). The proxy pattern is a rather
unintrusive and maintainable solution: A true DS middleware

http://philcalcado.com/2017/08/03/pattern_service_mesh.html

48

From Sidecar to Service Mesh: Control vs. data plane

From: http://philcalcado.com/2017/08/03/pattern_service_mesh.html

The proxies, together with the control plane or mesh master form a separate
middleware to control routing etc.

http://philcalcado.com/2017/08/03/pattern_service_mesh.html

49

Still Performance Problems...

- Delivering a complete homepage still took too long!

- Everything had been parallelized already!

- lots of CPU and I/O used for dynamic page construction!

Clearly, the effort for a complete HP request was
considerable. How could we reduce latency and effort?

50

Possible Causes for Performance Problems
• No Caching (we did not know what ???)

• No Pooling (we started pooling heavy objects like connections, threads,
parsers)

• No Threading (we did parallelize everything. This does not reduce latency
across machines)

• Persistent session state large or slow (oops, 25k/req. Into DB...)

• High-level Synchronization (we checked our source for “synchronized”
statements at important bottleneck functions

• Synchronous instead of asynchronous requests (Java did not support async.
I/O at that time)

No caching is possible without an information architecture,
which specifies - from a business point of view - how current
information has to be! If your infrastructure cannot deliver at
that rate: “ Business, we have to talk...”

51

On Performance, Caching and Architecture

• No Information Architecture existed: Information not
qualified with respect to aging and QOS.

• Caching possibilities not used (http) or underestimated (20
secs. Are static!)

• No compression or web accelerators used.

• Architecture not fit to support caching (where and what
analysis missing)

• Large scale portal needs fragment architecture

• Tactical mistakes: no automatic service time control, no
automatic DB connection hold control, internal threading
introduced too early…

52

Caching: Why, What, Where and how much?

Information
Architecture

Fragment
Architecture

Caching
possibilities

Throughput/
Performance

•Lifecycle

•Fragmentation

•QOS (e.g. Realtime
quotes)

•Result Objects/Value
Objects

•Invalidation mechanism

•Addressing of fragments

•Cache Subsystem QOS
(e.g. automatic re-load)

Problem
analysis

The DB is usually
THE bottleneck in
a large-scale portal

The DB is usually
THE bottleneck in
a large-scale portal

determine

53

Information Architecture – Lifecycle Aspects

Country Codes No (not often,
reference data)

No

News Yes (aging only) No, but personal
selections

Greeting No Yes

Message Yes (slowly
aging)

Yes

Stock quotes Yes (close to
real-time)

No, but personal
selections

Homepage Yes (message
numbers,
quotes)
Question: how
often?

Yes (greeting
etc.)

Data / changed
by

Time Personalization
For every bit of information you
must know how long it is valid
and what invalidates it. What

are the costs to replace it? And
will replacement bring your
backends down because of

millions of concurrent requests?
Even caching things for one

second might help!

For every bit of information you
must know how long it is valid
and what invalidates it. What

are the costs to replace it? And
will replacement bring your
backends down because of

millions of concurrent requests?
Even caching things for one

second might help!

54

Ext.
Service

Request

Back-ends

 Information- and Distribution Architecture

Service
Access

Aggre
gation

Integ
ration
Inter-
Pret.

Portal
DB

Profile
server

Ext.
Service

IA defines pieces of
information to aggregate

or integrate

IA defines pieces of
information to aggregate

or integrate

DA tells portal how to
map/locate IA defined

fragments (separation of
concerns)

DA tells portal how to
map/locate IA defined

fragments (separation of
concerns)

55

Controller
Servlet News

Result
Bean cache

Research
Result

Bean cache

Quotes
Result

Bean cache

JSPs

Full-Page
Cache

Per user
Hand
lers

Domain
Object
Cache
(charts,
News,
Market

Data User
Etc.)

SAL

Market
data

Cache

Market
Data

service

Fully
processed

Page

Page
parts,

processed

Distributed
cache, raw

data

Service
Access
Layer

Portal
DB

Cache fragments, locations and dependencies (without
client and proxy side caches)

56

Several Hosts Without Distributed Cache

Internet

Load balancer

Portal DB

App.
Server 1

JVM
cache1

App.
Server 2

JVM
cache2

App.
Server 3

JVM
cache3

App.
Server 4

JVM
cache4

host1 host2

X

XXX X

BTW: ALL external
sources suffer from

multiple access!

Item X is loaded several
times: performance AND

consistency problem!

57

Several Hosts With Distributed Cache

Internet

Load balancer

Dist.Cache

App.
Server 1

JVM

App.
Server 2

JVM

App.
Server 3

JVM

App.
Server 4

JVM

host1 host2

X

Portal DB
X

Ext.
service

58

The need for an asynchronous loader

request cache

async.
loader

DBpre-load cache
asynchronously

The async. loader decouples synchronous request time from asynchronous
retrieve time. The is a tight limit on what can be done in a distributed system
while a user is waiting.

59

Fragments

- Complete pages are frequently uniqe to customers. They
cannot be re-used for others

- Page fragments can be shared and re-used heavily in most
cases.

- Keeping fragments separately allows a huge reduction in
back-end requests.

- The downside: If fragments change, you need a mechanism
to invalidate dependend pages

60

Channel Access Layer

Aggregation layer

Datacache 1

Service Access layer

Storage manager

Normalized
Request Object

Object
Dependency

Graph

IL Fragment Cache

Profile Info

Personalization

Rule Engine

Authorization

Integration layer

Datacache 2

Storage manager

Fragment
Description

Instance

Fragment Request

notifies

invalidates

AL Fragment Cache

invalidates

Fragment Based Information Architecture

Goal: minimize backend access through fragment assembly
(extension of IBM Watson research)

61

Physical and Process Architecture

The physical architecture deals with reliability issues
(replication, high-availability etc.) and horizontal and/or
vertical scalability.

A projects physical architecture needs to define the scalability
methods FROM THE BEGINNING because of their influence
on the overall system architecture (e.g. distributed caching)

A horizontally scalable application can be replicated on more
hosts. It avoids a single point of failure.

If an application scales only vertically this means that one can
only install more CPUs or RAM on the single instance of the
applications host. This type of application has limited
scalability and availability (a so called HA-application)

62

Physical Portal Architecture: Web Cluster

Load
Balancer

Web
Proxy

Host
(user data)

Auth
Service

Intranet
Client

Web
Proxy

Web
Server

Web
Server

App.
Server
Clone
Clone

App.
Server
Clone
Clone

Web
ProxyWeb

Server

App.
Server
Clone
Clone

Portal
DB

Internet
Client

F F F
F

Issues: load handling, SSL, fail
over, vertical and horizontal
scalability, firewalls and
authentication through SSO

Market
DataMarket

Data

E-BANK
App.

63

Physical Architecture Alternatives

Portal DB

App.
Server 1

JVM

App.
Server 2

JVM

App.
Server
JVM

host1..n large host

one (big) application
instance only

several copies of the
application on one or more

(smaller) hosts

Portal DB

64

Current Fan-Out Architecture

Performance and Throughput

65

Large fan-out Architectures at Google

A portal is a typcial “large-fan-out architecture” with long-tail
problems. See how google handles this: Talk by Jeff Dean,
http://static.googleusercontent.com/media/research.google.com/en/
/people/jeff/Berkeley-Latency-Mar2012.pdf

66

Google Search Query Trace

“the Nyquist theorem and limitations of sampling profilers
today with glimpses of tracing tools from the future”,
http://danluu.com/perf-tracing/

From:

67

Reminder: The Costs of Delays

100 sub-calls, 1% delayed, how many calls will experience a
delay?

“Stalls” of any kind are critical in this architecture. What
can we do against hiccups and stalls? Watch out for requests
beyond the 99%ile! (Gile Tene, Azul: How NOT to measure
latency)

68

Lessons learned on Latency
Reduction/Tolerance in FO-Arc.

- Keep response times in a tight percentile but be aware of stragglers

- fight stragglers with backup requests and cross server cancellation.

- Watch for overload at sender when responses come back

- Do NOT distribute load evenly: synchronize background load across machines
e.g. every 5 minutes.

- Reduce head-of-line blocking (partition large requests)

- Partition data across machines

- Cheat: come back with partial data

- Cross request adaptation

- Increase replication count

- Beware of the incast problem

from: Jeff Dean, " Achieving Rapid Response Times in Large Online Services"

69

Network Incast

PHP Client

Switch

memcache memcache memcache memcache

Many Small Get
Requests

From Bobby Johnson,
Facebook

Lot's of concurrent
responses

70

Rendering

Browser Client
ReactJS

Edge LB/
API Server

Microservice Microservice Microservice Microservice

Rendering on the client

From Amir Jasin,
https://medium.com/swlh/scaling-on-the-cheap-933e46944886#.5e4khjmjm

JSON response

CDN
Static page

JSON response

AWS hosted

71

Availability Aspects of Fan-Out
Architectures

 The following diagrams are from:

Fault Tolerance in a High Volume, Distributed
System, by Ben Christensen (Netflix),
http://techblog.netflix.com/2012/02/fault-
tolerance-in-high-volume.html

72

Failure of a Service

From: Ben Christensen (Netflix), http://techblog.netflix.com/2012/02/fault-
tolerance-in-high-volume.html

73

Avoid Getting Stuck!

• Fail Fast: do not wait for resources which have problems.
• Always use timeouts when accessing a service
• Use exponentially decreasing re-tries if needed
• Use alternatives when a service does not work (fallback), e.g. serve

stale data
• Cache: Retrieve data from local or remote caches if the realtime

dependency is unavailable, even if the data ends up being stale
• Eventual Consistency: Queue writes (such as in SQS) to be persisted

once the dependency is available again
• Stubbed Data: Revert to default values when personalized options can't

be retrieved
• Empty Response ("Fail Silent"): Return a null or empty list which UIs

can then ignore

After B.Christensen

74

Prevent stuck Services: “Bulkheads”

Diag: B.Christensen. Semaphores and Threadpools implement the “bulkhead”
pattern. Otherwise all available threads will quickly block at an
overloaded/crashed service

try-acquire()

75

Change Processing: Circuit-Breaker

Diag: B.Christensen. Feedback-control is becoming an important feature of
data-center design!

76

Example

Diag: B.Christensen. Timeouts, pools and retries combine to avoid stuck
requests.

77

Black-Swans

Laura Nolan, what breaks our systems?

https://www.usenix.org/conference/lisa18/presentation/nolan

78

Cell-Architectures

- Blast Radius Reduction

- Shuffle Sharding

79

Amazon Kinesis Incident
November, 25th 2020

We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-
EAST-1) Region on November 25th, 2020.

Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several
other AWS services. These services also saw impact during the event. The trigger, though not root cause, for the event was a relatively
small addition of capacity that began to be added to the service at 2:44 AM PST, finishing at 3:47 AM PST.

There were a number of services that use Kinesis that were impacted as well. Amazon Cognito uses Kinesis Data Streams to collect and
analyze API access patterns. While this information is extremely useful for operating the Cognito service, this information streaming is
designed to be best effort. Data is buffered locally, allowing the service to cope with latency or short periods of unavailability of the
Kinesis Data Stream service. Unfortunately, the prolonged issue with Kinesis Data Streams triggered a latent bug in this buffering code
that caused the Cognito webservers to begin to block on the backlogged Kinesis Data Stream buffers.

CloudWatch uses Kinesis Data Streams for the processing of metric and log data.

CloudWatch Events and EventBridge experienced increased API errors and delays in event processing starting at 5:15 AM PST. As
Kinesis availability improved, EventBridge began to deliver new events and slowly process the backlog of older events. Elastic
Container Service (ECS) and Elastic Kubernetes Service (EKS) both make use of EventBridge to drive internal workflows used to
manage customer clusters and tasks. This impacted provisioning of new clusters, delayed scaling of existing clusters, and impacted task
de-provisioning. By 4:15 PM PST, the majority of these issues had been resolved.

At 9:39 AM PST, we were able to confirm a root cause, and it turned out this wasn’t driven by memory pressure. Rather, the
new capacity had caused all of the servers in the fleet to exceed the maximum number of threads allowed by an operating
system configuration. As this limit was being exceeded, cache construction was failing to complete and front-end servers were
ending up with useless shard-maps that left them unable to route requests to back-end clusters.

https://aws.amazon.com/message/11201/

80

Blast Reduction I: Regions

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

81

Blast Reduction II: Planes

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

82

Blast Reduction III: Availability Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

83

Blast Reduction III: Availability Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

84

Blast Reduction IV: Cells and Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

85

Blast Reduction IV: Cells

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

86

Blast Reduction V: Shuffle Sharding

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

87

Blast Reduction V: Shuffle Sharding

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

88

Exercise: Image Conversion Service

Users: 100,000, requests: 10000/sec max. Availability: 99.9, Latency: 99th
percentile <500ms with images <1MB (example from M.Cavage, ACM Queue)
Authentication needed. Do some back-of-the-envelope calculations and draw a
system architecture!

Conversion
service

clients

image

image

89

Resources (1)

• Desaster Inpol-neu, Christiane Schulzki-Haddouti, C‘t 24/2001 pg. 108ff. A
typical case of large-scale, top-notch IT-project gone foul.

• Darrel Ince, Developing Distributed and e-commerce Applications. A very
good introduction to all the topics necessary for building real-world apps.
Still rather thin. The content and style comes close to what is covered in this
lecture.

• David Purcell, Moving to a cluster... www.sys-con.com/story/print.cfm?
storyid=47354

• IBM Websphere clustering redpaper on www.redbooks.ibm.com
• Luiz Andre Barroso et.al, Web Search for a planet: the google clustering

architecture. Describes an architecture optimized for read/search access and
not the typical transaction processes. Compare the machine types and
numbers with a large web shop.

• Sing Li, High-impact Web tier clustering, Part 1 and 2: Scaling Web services
using Java Groups etc. (www.ibm.com/developerworks)

• Thomas Smits, Unbreakable Java – A java server that never goes down.
Describes SAPs approach for creating reliable Java VM environments by
separating session state from VM using shared memory technology. Also
processes are separated from VMs

• Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area
Storage with COPS, Wyatt Lloyd, Michael J. Freedman, Michael
Kaminskyy, and David G. Andersenz, Princeton University, Intel Labs,
Carnegie Mellon University

90

Resources (2)

• L.Reith, Concept of data distribution for worldwide distributed services in
service -oriented architectures, HDM/DaimlerChrysler 2007.

• http://jroller.com/page/ rolsen?entry=building_a_dsl_in_ruby1
• James Hamilton, http://perspectives.mvdirona.com/2009/10/the-

cost-of-latency/
• Steve Souder at Velocity:High Performance Web Sites: 14

Rules for Faster Loading Pages
http://stevesouders.com/docs/velocity-20090622.ppt

•

http://stevesouders.com/docs/velocity-20090622.ppt

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90

