
Distributed Objects

Lecture on

Prof. Walter Kriha,
HdM Stuttgart

2

Objective
This lecture intends to explain the object paradigm:

- seamlessly integrating remote calls into an OO-
Application

- keeping object semantics across servers and systems

The lecture also intends to explain the price to be paid
for this transparent integration and its final
limitations.

3

A Remote Object Call

On the client side it looks like a regular and local object method. In
reality, something gets transmitted to a remote machine and some
answer is returned. On the server side, no real OO-language needs
to be involved. But object-semantics need to be preserved (e.g.
state)

Java client C server

Bank bank = new Bank(“MyBank”);
Money m = new Money();
m = bank.withdraw(“kriha”, 50);
System.out.println(“balance” +
bank.getBalance(“kriha”);

withdraw(“MyBank”,“kriha”, 50);
Return m;
……

Return getBalance(“MyBank”, “kriha”);

4

Overview

Fundamental Properties of Objects
Local and remote object references
Parameter passing
Object invocation types
Distributed Object Services
Object Request Broker Architectures
Interface Design
Example Java RMI

5

Objects vs. Abstract Data Types

Global or
module data
(optional)

Stateless
Procedures

(RPC)

Class:
Common
Methods

Fields
(state)

Fields
(state)

Object 2

identity

Object 1

Identity

Objects are supposed to have individual STATE and IDENTITY (named state). This
is the fundamental difference to e.g. procedure calls. Are stateless objects useful?
What does keeping state mean for a server? And how does an object-reference work
in DS?

6

Fundamental Object Properties

- local objects are created with new()
- a local object reference is returned and can be used to call methods
- the object reference serves as a locally unique identity
- an object “belongs” to its creator who controls access to it
- objects hold state as long as the VM is alive and the objects in use
- objects have a lifecycle that usually ends with their creator
- objects have fine-granular interfaces and methods
- creation of objects is cheap
- objects can be small and many

“Objects” in an OO-language seem to have
lots of properties which might be hard to keep
in a concurrent and remote implementation!!

7

 Remote Objects: some tough questions!
• Object identity is usually only valid locally (e.g. a memory address). This is fairly

useless for a remote client. What is the identity of a RO?
• Who creates ROs? New() on the client won't cut it.
• How do clients get access to/find ROs?
• Who controls concurrent access to ROs?
• How long do ROs live in a server?
• Where do ROs go, when the server dies? Do clients lose their objects in that case?
• What happens to the state of a RO?
• What happens to a RO, when a client dies?
• How much does a RO cost (latency)?
• Does a RO have the same interface as a local object?

Keeping up object semantics across machines can become quite
expensive and difficult...

8

 Remote Objects and Object References

9

What is a Remote Object?

Remote
Object

Interface Implementation
Unique
Identity

Object Reference Public Methods A servant that
need not be
an object

A remote object is the combination of system-wide unique identity,
interface and implementation with the special twist that clients
KNOW the interface, USE the identity but do NOT KNOW about
the implementation. To clients, the interface IS the implementation.

10

The Trick: Interface vs.
Implementation

Object
Interface

Implementation
A (local)

Proxy
Implementation

B (local)
client

As long as the client only works with an interface, the
implementations can change without breaking the client (or so the
OO-theory says….). This promises complete transparency of
remote calls behind object interfaces. But how far does this
transparency go?

Remote
Server

11

Object Model and Type System

• Basic Types: sequence,
string, array, record,
enumerated, union

• Value Objects (Data)
• Remote Object References

(reference semantics)

• Basic Types of language (int,
byte etc.)

• Serializable non-remote
Objects (value semantics)

• Remote Object References

(reference semantics)

CORBA Java-RMI

To achieve language independence, CORBA defines its own
types. Nothing else can show up in the interfaces of remote
objects. Especially no user defined classes. Only compositions of
basic types and the OR. Note that Java-RMI allows classes if
they are serializable!

12

Example: CORBA Remote Object Reference

The organization of an OR. (from van Steen, Tanenbaum).
All the information a client needs to call an object. All the
information a server needs to create/manage the object.

13

How do clients get access to remote objects?

• A Naming Service (like a directory)

• A web server (serialized OR)

• Via mail or a piece of paper

• From another remote object which serves as
a “Factory”.

This really is the question: where do clients get the Remote Object
Reference for a remote object from?

14

Supporting Middleware

15

 Broker Pattern and Architecture
 Remote Object Reference Construction
 Invocation of Remote Method Calls
 Interceptor/Filter Pattern
 Distributed Object Services

16

Interface Definition Language (IDL)

Module Count

{

 interface Count

{ attribute long sum;

 long increment();

};

}

CORBA’s way to specify language independent remote objects. An
interface is part of a type. It describes the externally visible part of
an object. A class implements a type (and its interface).

Please note: CORBA has no real notion of a “class” in the OO
sense!

From: Orfali,
Harkey,
Client/Server
Programming with
Java and CORBA

17

Distributed Objects

Application A

Stub Library (gen.)

External Data Repres.

Operating System
Node A

Skeleton Library (gen.)

caller receiver

Just like a regular RPC!

The main components of Distributed Objects. Not shown is the processing framework
(threading, async. Etc.). Stub/skeleton libraries are generated from interface definitions.

Request/Reply Protocol

Operating System
Node B

Marshaling Libr. (gen.)

External Data Repres.

Request/Reply Protocol

Marshaling Libr. (gen.)

I/O and Proc. Model I/O and Proc. Model

Object Broker Services (creating,
Finding etc.)

Application A

Object Broker Services and
Object Semantics

18

CORBA System Architecture

The orb interface solves bootstrap problems (e.g. where to get
initial object references) and string2object/object2string
conversions. (from van Steen, Tanenbaum). Not shown: Interface
Repository, Naming Service etc.

19

The Broker Pattern

A broker introduces and mediates communication between de-
coupled entities. (diagram from:
http://www.eli.sdsu.edu/courses/spring04/cs635/)

20

Construction of an Remote Object Reference

Object
Implementation

(Servant)

Object
Adapter

Object
Request
Handler
(ORB) e.g. printer

Register

OID1=0xffee
OID2=…….,

Active Object Map
(remote object table)

Create
unique OID

Create system-wide object
reference

Register OID

Map objectname
with address

The new object reference can be marshaled and sent to a client. The
construction of the server object/implementation can be lazy!
Object adapters manage large number of similar objects (like
customers, orders etc.)

Host,port,protcocol
Object adapter,

object ID,

21

Static Remote Method Invocation

client stub skeleton servant

Remote object
Interface Definiton

Compiled into stub
and skeleton

Client host Servant host

Stubs may be statically linked or dynamically downloaded. Clients
KNOW the remote object interface IN ADVANCE of the use! The
mechanism is identical to RPCs.

22

Dynamic Invocation

client
Request
Object

Dispatcher
(DSI)

servant

Remote object
Interface Definition (e.g from Interface Repository)

Request object built
from meta-
information

Client host Servant host

Clients fill in a request object (built from meta-information of the
remote object) and send it to a dispatcher on the servant host. The
servant does not know that the request was dynamically built. The
mechanism is similar to the reflection pattern.

23

Asynchronous Invocations

Most invocations are synchronous, the client waits for the results from the
servant. Three asynchronous types are frequenty used:

a) one-way calls (they cannot have return values or out parameters.
Delivery guarantee is best-effort.

b) Deferred synchronous (client continues and later checks for results
(blocking). At-most-once delivery.

c) True asynchronous with server callbacks (server sees difference
between sync. And async. Calls): Needs messaging middleware to
achieve at-most-once delivery guarantees.

It depends on the implementation whether calls are really
asynchronous (the client disconnects and the server later on builds a
new connection to the client) or simulated (client continues but one
client thread blocks waiting for the synchronous response from the
server (In this case the server does not see a difference between sync.
And async. Calls)

24

Main Distributed Object Services

• Finding Objects

– Naming service (maps names to references),

– Trading service (object offer services, clients search by constraint)

• Preserving Object State:

– Persistence service to store object state transparently (and load it on
demand)

– Transaction Service: preserve object consistence across changes (several
objects, distributed, nested or flat)

– Concurrency Service: provide locks for shared objects

– Security Service: check roles of principals

• Grouping of Objects, Collections

Same principle today: cloud collections: https://docs.microsoft.com/
en-us/azure/service-fabric/service-fabric-reliable-services-reliable-
collections

25

Example: Remote Customer Object

Teller

Terminal

CustomerFactoryProxy

Customer15Proxy

CustomerFactory

Customer15

CFPNaming/Registry service

Naming.bind(“CustomerFactory”
, CFP-Reference)

Customer
Table

Customer 15

CustomerFactoryP. =
Naming.lookup(“CustomerFactory”)

CFP.get(“Customer”, ID=15)

Select from Customer
Where ID=15

New Customer()

Begin TA
Customer.setCity(“Berlin”)
Customers.set(….)
End TA

Mid-tier server backend server

Other
Application?

Update Customer 15..

The illusion of object behavior across nodes is costly: it needs finding objects (naming service), modifying
objects (transactions and locking) and saving object state (persistence service) and last but not least access
control (security service). If you take it all together and automate it, you get Enterprise Java Beans.
Without the special services and without automation you get Java RMI.

User: X
Role: admin

security service

 isUserInRole(X, admin)
12

3

4

5

6

7

8

26

Filtering: Portable Interceptors 1

By intercepting calls additional (context) information can be added
and transported transparently between ORBs. The original protocol
already knows security and transaction contexts but applications can
define custom context information. The same technique is used in
servlet filters, Aspect Oriented Programming etc. Diagram from
Marchetti et.al, see resources)

27

Portable Interceptors 2

two ways to realize interception and call extension. Note that
interceptors need to have access to the original call information and
that subtle ordering problems can occur. Application Servers use this
method e.g. to realize delegation of security information to backends.
(from Marchetti et.al, see resources)

28

Remote Interface Design

29

Exercise 1: State, Concurrency,
Performance

Interface Stack {

Push (object);

Object Pop();

Boolean IsEmpty();

}

• Is this a reasonable interface for an remote object?

• would you use exceptions? Where?

• does concurrency make a difference in this case!

• Would you add methods for performance reasons?
Which ones?

30

Exercise 2: Granularity and
Concurrency

Interface Address {

setStreet(String);

setHouseNumber(String);

setCity(String);

set ZipCode(String);

}

• How would you protect an object instance of Interface Address against concurrent
use?

• How would a server instantiate such an instance? In case of client failures?

• Performance improvements?

31

Exercise 3: API

Interface Foo {

init();

doIt(String);

reset();

}

- Objects of Interface foo: how are they initialized? Who does it?

- Design various use cases for this protocol. Which one is the most
likely one?

32

Remote Interface Design

• Respect the possibility of concurrent calls in your
interface design: Do not keep inconsistent state across
method calls.

• Do not perform staged initialization e.g. the infamous
“half-baked object” anti-pattern (B.Scheffold).

• Don’t use complicated or unclear orders of calls for
your interface (what comes first? Shake hands with the
king or kiss the queens hand?)

Have a look at: Mowbray, Malveau, Corba design patterns. The
patterns are important for other object based middleware too.

33

Interfaces for Remote Objects have to be
different from object models for local

applications! This is because of concurrency
(state) and performance (granularity of calls).

You cannot re-use a local model for
distributed applications!!!!!

34

The big problems of Remote Objects

• Interfaces: too granular and therefor slow

• No direct support for state handling on servers

• Bad for “data schlepping” applications (too expensive)

• Cross-language calls expensive to build

• No security in calls

• No transaction support

35

Distr. Obj. Services vs. Components

object

Transaction
service

Persistence
Service

Security
Service

Licensing
Service

Framework

Transaction
service

Persistence
Service

Security
Service

Licensing
Service

object

Service based code turned out to be less re-usable as expected. By
letting the framework call services, objects don’t need to know
WHAT services to call or WHEN!

CORBA EJB

36

Java Remote Method Invocation
(RMI)

37

Java Remote Method Invocation (RMI)
• Architecture
• Request/reply protocol
• External data representation
• Parameter passing conventions
• Stub/Skeleton generation
• Important classes and tools
• Remote Object Registration
• Remote Object Activation
• Object finding/client bootstrap
• Garbage Collection
• New developments in RMI
• Specials

38

Java-RMI System Architecture (old)

 client servant

Java VM Java VM

OS OS

stub
Skele
ton

ActivatorRegistry

RMI Runtime (rmiregistry, rmid)

Tooling:
Rmic

compiler

Remote
interface

39

RMI System (new)

From Oracle RMI tutorial (http://docs.oracle.com/javase/tutorial/rmi/overview.html).
Exported classes are loaded dynamically. RMIC no longer used.

http://docs.oracle.com/javase/tutorial/rmi/overview.html

40

Java RMI Request/Reply Protocols (1)

• JRMP: first protocol for RMI.
– Bandwidth problems due to distributed garbage

collection with short term leases and permanent
reference counting

– Dynamic download of code

If you want to understand garbage collection: read Paul
Wilson’s seminal paper on GC (see resources)

41

Java RMI Request/Reply Protocols (2)

• RMI-IIOP: RMI over CORBA’s Internet Inter-Orb
Protocol
– uses Java Naming and Directory Interfaces (JNDI) to

lookup object references (EJB etc. all use it too).
Persistent!

– Requires code changes: PortableRemoteObject
– Need to generate/define code for IIOP (rmic –iiop xxxxx)
– Need to generate IDL file(s) for CORBA systems (rmic –

idl JavaInterfaceName (Interface!!)
– Code shipping?

Advantage: Move the idl file of your Java Remote Object
Interface to a CORBA system, generate the CORBA stub with
its IDL compiler and now the CORBA system can call your
remote object. Or call into CORBA systems by yourself.

42

Java RMI External Data Representation

Who cares? Java RMI is only between Java objects and
the virtual machine protects applications and middleware
from hardware differences!

client

RMI layer

Java VM

OS

Hardware

client

RMI layer

Java VM

OS

Hardware

The Java VM hides the
differences in hardware
and OS. A concept
widely used e.g. in
IBM

43

Java RMI parameter passing rules

Parameter Atomic Non-remote
(serialized)

Remote
Object

Local Call Call by
Value

Call by
Reference

Call by
Reference

Remote Call Call by
Value

Call by
Value

Call by
Reference

Note that CORBA e.g. for a long time did not support serialized
value objects.

44

Java RMI Stub/Skeleton Generation
• RMI connects implementations, not interfaces: you must run
the stub generator (rmic) on the implementation class!

• Stubs can be dynamically downloaded from the registry or
from a web-server

• Skeletons are generated dynamically on the server side using
reflection. (need to learn about meta-object protocols and
reflection? Read Gregor Kiczales, Andreas Paepcke: Open
Implementations and Metaobject Protocols. A free and very
easy tutorial available on the web)

What happens if you downloaded a stub to a client and it gets changed afterwards? New RMI
versions allow dynamic generation and download of implementation code. Be careful to avoid
mixing remote and local class sources (codebase parameter)

45

Java RMI: Important Classes and Tools

Remote
Remote Object Interfaces extend this class
(tag interface)

RemoteException All Remote Object methods throw this class

Naming
Clients use it to find remote object references,
Servers register their objects with it.

UnicastRemoteObject Remote Object Implementations extend it

rmic Stub/skeleton/idl file generator

registry Simple name server for java objects

46

Java Remote Interface Example

package soccer;
interface Team extends Remote {
public:
 String name() throws RemoteException;
 Trainer[] coached_by() throws RemoteException;
 Club belongs_to() throws RemoteException;
 Players[] players() throws RemoteException;
 void bookGoalies(Date d) throws RemoteException;
 void print() throws RemoteException;
};

Remote operations

Interface name
Declare it as remote

Package name

From: W.Emmerich

47

Java RMI: Activation

 Client Host

Stub
Faulting
Reference

Live
ref

 Host www.bvb.de

Activa-
tion ID

Activator
Activation Descriptors:
ActGroup ClassName URL Init
AG1 Team www.bvb.de/…
AG2 Player www.bvb.de/…
AG2 Player www.bvb.de/…
AG2 Player www.bvb.de/…

Java VM1 Java VM2

AG1 AG2

1: activate

2: create object
in VM

3: pass
object ref

4: update
live ref

From: W. Emmerich, Engineering Distributed Objects

48

Why is activation so important?

clientclientclientclientclient

Servant
Passivate()
Activate()

persistent
storage

Servant
Passivate()
Activate()

Servant
Passivate()
Activate()

Servant
Passivate()
Activate()

Servant
Passivate()
Activate()

If a server can transparently store servant state on persistent
storage and re-create the servant on demand, then it is able to
control its resources against memory exhaustion and
performane degradation.

49

Security
• Specify the QOS of sockets used by RMI, e.g. SSL channel

• RMISecurityManager prevents or controls (policy) local access from
downloaded implementations.

• A SecurityManager is now required on both client and server sides:
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
 }

• Fallback to HTTP-Post in case firewall blocks regular sockets (tunneling)

50

Transportable Behavior: a compute server

// regular interface (non-remote) for commands (pattern)
public interface Task {
 Object run();
}

// the compute server remote interface
import java.rmi.*;
public interface ComputeServer extends Remote {
 Object compute(Task task) throws RemoteException;
}

// the compute server implementation
import java.rmi.*;
import java.rmi.server.*;
public class ComputeServerImpl
 extends UnicastRemoteObject
 implements ComputeServer
{
 public ComputeServerImpl() throws RemoteException { }
 public Object compute(Task task) {
 return task.run();
 }
 public static void main(String[] args) throws Exception {
 // use the default, restrictive security manager
 System.setSecurityManager(new RMISecurityManager());
 ComputeServerImpl server = new ComputeServerImpl();
 Naming.rebind("ComputeServer", server);
 System.out.println("Ready to receive tasks");
 return;
 }
}

After: a compute server architecture, see resources

51

Resources

• Middleware für verteilte Systeme (MIKO ORB) mit Source Code. (dpunkt
verlag hat noch ein Buch direkt zum MIKO angekündigt.

• Orfali/Harkey, Client/Server Programming with Java and CORBA (covers
RMI as well, very good reading with lot’s of code by the fathers of C/S
computing)

• Paul Wilson, Garbage Collection

• Gregor Kiczales, Andreas Paepcke: Open Implementations and Metaobject
Protocols. A free and very easy tutorial available on the web about
reflection etc.)

• CORBA Request Portable Interceptors: A Performance Analysis C.
Marchetti, L. Verde and R. Baldoni

• Van Steen, Tanenbaum: Chapter 9 (slides plus pdf from:
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/
dist_sys_1e/

• Oracle Tutorial on RMI:
http://docs.oracle.com/javase/tutorial/rmi/overview.html

52

Resources

• Stefan Reich, Escape from Multi-threaded Hell
http://www.drjava.de/e-presentation/html-english/img0.html
(good intro to event-loops and “E”)

• A compute server architecture,
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
138781.html

53

Resources

Doug Lead, Design for open Systems in Java
http://gee.cs.oswego.edu/dl/coord/index.html

• Carl Hewitt's seminal paper The Challenge of Open
Systems (http://citeseer.nj.nec.com/context/221753/0)
explains the constraints of large scale mutually
suspicious radically distributed systems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

