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When the Truth is Prohibitively Expensive

“Stop relying on strong consistency. Coordination and distributed 
transactions are slow and inhibit availability. The cost of knowing the 
“truth” is prohibitively expensive for many applications. For that matter, 
what you think is the truth is likely just a partial or outdated version of it.

Instead, choose availability over consistency by making local decisions 
with the knowledge at hand and design the UX accordingly. By making 
this trade-off, we can dramatically improve the user’s experience—most of 
the time.” Tyler Treat, Distributed Systems Are a UX Problem, 
www.bravenewgeek.com

The quote shows a new understanding of consistency. 
It all started with CAP and now it is taken further and 
further, including cheating and bending the problems...

http://www.bravenewgeek.com/
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Fast read/write vs. read your writes

Pat Helland, Scale By The Bay 2018, Keynote III Mind Your 
Sta.mp4
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Overview

- classic (ACID) distributed consistency 
    Distributed 2P locking 
    Distributed 2PC consensus 
- ACID 2.0 eventual (coordination-free)  consistency
    - CAP and its children, CALM, CRDTs etc.
    - distributed replication (cassandra etc.)
    - CALM (bloom) consistency
    - CRDTs
-  Distributed Coordination (chubby, zookeeper)
    - distributed consensus protocols
    - Cluster scheduler (borg)
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Classic (ACID) Distributed Consistency

- Distributed Objects and Persistence
- ACID 
- Transactions
- Isolation Levels
- Two-Phase Locking 
- Distributed Transactions
- Two-Phase Commit (2PC)
- Failure Models for 2PC

“Transaction processing expert Phil Bernstein suggests that 
serializability typically incurs a three-fold performance penalty  on  a  
single-node  database  compared  to  one  of  the most  common  weak  
isolation  levels  called  Read  Committed! (P.Bailis, Readings in 
Database Systems, 2015, ch.6 Weak Isolation and Distribution)
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Persistent Distributed Objects
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Persistent Object Representations

Proxy Rep. row

table

Data storesDist. Service/
Server

Client

The real storage object lives in a data store and uses data store concepts for storage, 
e.g. a row in a table. The service works with object representations (“Incarnations” 
according to Emmerich) and provides the illusion of a persistent object to clients. The 
Java Connector Architecture provides an adapter interface for resource managers.

mapping

Rep.Rep.
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Mechanisms for Persistence

1) Use an SQL Driver to store object state. Suffers from 
“impedance mismatch” and needs to control locking etc. in the 
service.

2) Use an object/relational mapper (e.g. EJB/Hibernate) to store 
object state transparently for the programmer.

Just storing an object is simple. Doing this in a way that protects 
from concurrent access, system failures and across different data 
stores is much harder.
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Persistent Object Mapping

The key to persistent mapping is meta-information. It is used to 
generate both the object representations for a service and the 
code necessary for the data store to store the objects with its own 
mechanisms and objects. Enterprise integration software also 
specializes in this kind of mapping. 

Mapping specification:

Class X to table Y

fieldA to column 1, tagged as primary key

fieldB to column2

Class X {

Int fieldA;

String fieldB; }

Create Table Y, 

1 integer (primary key) , 
2 string

Object view Data store view
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Object Mapping Approaches

Inheritance creates difficult problems for table mapping. Either 
performance or flexibility suffer. EJB e.g. does not allow 
inheritance. A special problem is the extension of a type (class), 
i.e. to determine all the objects of a type.

Class X {

Int fieldA;

String fieldB; }

Create Table Z, 

0 Type of object

1 integer (primary key) , 
2 string

3 integer (only derived)

Object view

Class Y extends X{

Int fieldC;}

Create Table Y, 

1 integer (primary key) , 
2 string

Create Table Z, 

0 foreign key into Y

1 integer (primary key) , 

what if more derived 
classes come?

two table 
accesses needed
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Locking and Consensus 

A Rep. row

table

Dist. serviceClients

The diagram shows two problems: The yellow object is being shared between clients. 
Objects have state which needs to be consistent between calls. That's why we need locking. 
Client A uses two objects from different storage systems. Both systems need to agree about 
changes to achieve atomicity of a unit of work. That's why we need a 2PC consensus 
protocol.

O/R 
mapping

Rep.

CiCs
Procedural 
mapping

B

locking

consensus
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Example: JDO Object Types

Object or
Resource

StatefulStateless

transient

Non-
transactional

persistent

TransactionalNon-
transactional

Transactional

O/R mappers  support transactional and non-transactional versions of stateful 
objects



14

JDO Architecture

JDO’s are designed to work in a non-managed form (no application 
server) and a fully managed form. They are supposed to shield 
applications from different data sources and mapping problems
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State Diagram of JDO lifecycle

MakePersistent

Rollback

MakeNonTA

commit

commit rollback

commit

getValue

commit

setValue

rollback

deletePersistent

setValue setValue

makeNonTA

Commit/rollb.

MakeTAsetValue

MakeTA Commit/Rollb.

DeletePersistent deletePersistent
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BTW: Data Store Session Pooling

Rep.
row

Table Y

Dist. service

The number of channels to a data store is limited and if an object 
would directly allocate a session (channel) and not return it 
quickly, system throughput would become marginal. Also, session 
creation is expensive (security!). Now either clients ask a pool for a 
session or the container framework automatically allocates and 
returns sessions. Problems: timeouts, connection recycling, 

Session (connection) 
Contract

Rep.

Rep.
row

Table Z

DB session
pool
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Transactions

(From Peter Bailis, When ist “ACID”  ACID? Rarely! 
http://www.bailis.org/blog/when-is-acid-acid-rarely/

Architecture of a Database System: 
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf 

 
1. ACID

2. Transaction Models

3. Isolation Levels

4. Two-Phase-Locking: Isolation

5. Two-Phase Commit: Consensus

http://www.bailis.org/blog/when-is-acid-acid-rarely/
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Classic ACID Definitions

 
1. Did your PC crash and you lost the changes you made to a word file?  The changes 

were not DURABLE

2. Did you move your birthday party to a new location on short notice but couldn’t 
catch all participants in time so some showed up at the old location and some at the 
new? Your re-schedule call wasn’t ATOMIC

3. Did you and a friend work on a shared file on a server and ended up with some of 
your changes and some of her changes in the file? Your application did not provide 
ISOLATION between yourself and your friend.

4. Your friend wants to take a day off and asks you to do some of her work on that 
day (check out a piece of software, modify it, test it, document it and check it in 
again). You do it (maybe with some more iterations (;-) and next day she starts a 
new task. You have observed CONSISTENCY of the tasks.
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Transaction Properties and Mechanisms

Atomic changes over 
distributed 
resources

Consistency

Isolation from 
concurrent access

Durability of changes

Consensus/Voting algorithm: 
two phase commit

Observation of consistency 
constraints between objects 
(or “start consistent, end 
consistent)

Locking mechanisms: 2 phase 
locking, hierarchical 
locking 

Transfer of changes to memory 
objects to persistent storage
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Serializability and Isolation 

 The textbook definition of ACID Isolation is serializability (e.g., 
Architecture of a Database System, Section 6.2), which states that 

the outcome of executing a set of transactions should be equivalent to 
some serial execution of those transactions. 

This means that each transaction gets to operate on the database as if it were 
running by itself, which ensures database correctness, or consistency. A 
database with serializability (“I” in ACID), provides arbitrary read/write 
transactions and guarantees consistency (“C” in ACID), or correctness, of 
the database. Without serializability, ACID, particularly consistency, is 
generally1 not guaranteed

(From Peter Bailis, When ist “ACID”  ACID? Rarely! 
http://www.bailis.org/blog/when-is-acid-acid-rarely/

Architecture of a Database System: 
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf 

http://en.wikipedia.org/wiki/Serializability
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf
http://www.bailis.org/blog/when-is-acid-acid-rarely/#arbitrary-note
http://www.bailis.org/blog/when-is-acid-acid-rarely/
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Locking 
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Protect distributed objects : lost updates

Class counter {

Int count = 0;

Increment() {

Int temp = count;

Temp++;

Count= temp;}

Client A

Client B

Client A calls increment(). Count 
is 0, temp becomes 0.

Client A’s thread has used it’s 
slice and is preempted.

Client B calls increment(). Count 
is 0, temp becomes 0.

Client B adds 1 to temp and 
writes it back to count. Count is 1. 

Now comes Client A again. Also 
adds 1 to temp and writes it back 
to count. Count is 1 and NOT 2 
now. We’ve lost one update.

The lost update problem! 
Would it help to use count++ ?
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Protect distributed objects : inconsistent 
analysis

Class counter {

Int count1 = 1;

Int count2 = 0;

Swap() {

Int temp = count1;

Count1=count2;

Count2=temp;}

Int sum() {

Return count1 + count2; }

}

Client A

Client B

Client A calls swap(). After 
storing count1 in temp it is set to 
count2 (0).

Client A’s thread has used it’s 
slice and is preempted.

Client B calls sum(). Count1 is 
now 0, and count2 is still 0.

Client B comes back from sum() 
with result 0. 

Now comes Client A again. 
Writes temp back to count2 . 
Count2 is now 1 but sum() has 
reported 0 for both. The analysis 
of sum() is wrong.

The inconsistent analysis problem!



24

Use of locking against concurrent access

• Binary locks: e.g. synchronize(object). Will block all 
clients except of one.  

• Modal locks (read lock, write lock): Clients who only want 
to read can get read locks – many concurrent read locks are 
possible. 

Binary locks are very simple to use but performance suffers 
badly because they cannot distinguish between reads and 
writes.
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Lock compatibility matrix

OK NO

NO NO

Read lock

Read lock

Write lock

Write lock

The concurrency service will not allow concurrent locks other than 
read locks. A write lock will exclude all other locks.
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Time-Based Leases: Redlock-Algorithm

The redlock algorithm from Redis uses time-based leases for 
liveness reasons. From: M.Kleppmann, Designing Data-intensive 
Applications. 
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-l
ocking.html
 (Think asynchonous/partial synchronous systems)

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
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Time-Based Leases: Redlock-Algorithm

Without “fencing” (e.g. sequence number), storage cannot detect 
expired leases. 
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-l
ocking.html

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
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Lock granularity

database
Lock whole DB

Lock table

Lock row

Besides lock mode the granularity of locks will determine 
overall throughput. The smaller the better.
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Optimistic Locking

data Timestamp=1122

database
Lock row, read it (with 
timestamp), release lock

Overall throughput is better because locks are held only a very 
short time. The timestamp compare logic should be a 
framework mechanism of the client session objects.

Use row 
data copy

Write to DB. For all data read 
acquire locks and compare the 
timestamps. If one is newer, abort 
store operation

Client session
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Serializability with Two-phase locking

client
resource

resource

resource

resource

1. Allocate all 
locks

client

client

2. Manipulate data

3. release all locks

A basic requirement for the 2-phase locking protocol is that all 
locks are allocated first. After the first lock is released NO 
other locks may be acquired! This will guarantee serializability
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Deadlocks

Client A
Resource A

Resource B

Allocate lock for A

Client A

Deadlocks can be detected (e.g. by a database). To prevent 
deadlocks, always allocate resource locks IN THE SAME 
ORDER. Process termination must release all locks held by a 
process.

Client B

Client B

Allocate lock for B

Try to allocate lock 
for B: not granted, 
held by client B

Try to allocate lock 
for A: not granted, 
held by client A
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Distributed Deadlocks

Node1 Node3

Node2

A

B

C

T3

T1

T2 Wait for C

Held by T1

Held by T3

Held by T2

Wait for B

Wait for A

A distributed deadlock does not show locally. How can it be detected?
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Exercise:Distributed Deadlocks 
Detection

Some hints:  local wait-for-graph, detection server, distributed  edge chasing 
algorithms, stochastic. (from Coulouris et.al. Page 535). 

Find ways to detect a DD and discuss
a) correctness
b) liveness
c) cost/complexity
d) failure model
e) architecture type

Of your solution. 
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Distributed Transactions
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Transaction API

Client:

System is in consistent state

Begin Transaction

Modify objects 

Commit Transaction

System has new, consistent state, 
all local objects now invalid. The 
changes are VISIBLE to others.

On Error, either 
the system or the 
client can do a 
“rollback” which 
takes system 
state back to the 
beginning of the 
TA

Only in case of a successful commit operation becomes the new state durable 
and visible to others. Please note that “rollback” really means going back to the 
beginning COMPLETELY. Theoretically the client does not even KNOW that 
she tried an operation and even log files would have to be cleaned!
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Components of distributed transactions

Transactional
Client

Transaction
(current)

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)

Transactional
Servers
(objects)

Begin(), 
commit() 
Rollback() Read/write

Read/write/prepare 
commit ,rollback

Vote, commit, 
rollback

register

Every resource that implements the XA interface can participate in 
distributed transactions.
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Service Context

Some services need so-called context information to flow with a 
call. Two prominent ones are:

Security (needs to “flow” user information, access rights etc.)

Transactions (need to flow information about on-going 
transactions to participants)

This additional information needs to be standardized if different 
vendor implementations of services should interoperate.

Do you know other “context related” design problems?
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Distributed Two-Phase Commit: Vote

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)prepare

Vote

Voteprepare

The only way to achieve “atomic” operations in a distributed setting is to ask all 
the participants. After a client called “commit()” the TA-Coordinator asks all 
objects which are part of the TA to vote on either a commit or a rollback. The 
objects in turn ask the resource managers (e.g. DBs) to “prepare” for a commit. 
After successful return of a prepare the object AND the resource manager have 
promised to commit the changes if the coordinator sends a commit.
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Distributed Two-Phase Commit: Completion

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)Commit/

rollback

Commit/Rollback

Commit/RollbackCommit/

rollback

ONLY the coordinator can either commit or abort a TA after the prepare phase. It 
will call for a commit if the vote phase was successful and all participants have 
prepared for a following commit. If an error occurred (e.g. a participant was 
unreachable) the coordinator will call for a rollback.
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Example of distributed transactions

XAResource1 XAResMgr1 XAResource2 XAResMgr2 CoordinatorcurrentTA

begin

Withdraw money Register resource with coordinator

Read/write data

place money Register resource with coordinator

Read/write data
commit

vote

vote

Read/write data and prepare

Read/write data and prepare

Do commit

Do commit

Tell resource manager  to commit

Tell resource manager to commit

2pc phase 1

2pc phase 2

Work phase
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Failure models in distributed TA’s

Work phase:

- A participant crashes or is unavailable in work phase.

  The coordinator will call for a rollback.

- The client crashes in work phase (commit is not called). 
Coordinator will finally time-out the TA and call rollback.

Voting Phase:

- If a resource becomes unavailable or has other problems, the 
coordinator will call rollback

Commit Phase: (server uncertainty)

- a crashed server will consult the coordinator after re-start and ask 
for the decision (commit or rollback)
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Special problems of distributed TA’s

• Resources: Participants in distributed TA’s use up many 
system resources due to logging all actions to temporary 
persistent storage. Also considerable parts of a system may 
get locked during a TA.

• Coordinator – a single point of failure? Even the 
coordinator must prepare for a crash and log all actions to 
temporary persistent storage.

• Heuristic outcomes for transactions. Under certain 
circumstances the outcome of a transaction may only 
follow a certain heuristic because the real outcome could 
not be determined. (see exercises)
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Transaction Types: flat TA’s

begin Commit

Read/ write

Rollback

Flat TA’s show the all-or-nothing characteristics of transactions 
best. ANY failure will cause a complete rollback to the original 
state. If many objects have been handled this can lose quite a lot of 
work.
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Transaction Types: nested TA’s

Parent TA begin Commit

Read/ write

Rollback

Nested transactions allow partial rollbacks with a parent transaction. A child TA 
rollback does not affect the parent TA. But a parent TA rollback will return ALL 
participants to their initial state. Example: allocation of a travel plan: hotel, flight, 
rental-car, trips etc. The whole TA should not be aborted only because a certain 
rental car is not available.

Child TA begin

Child TA commit. 
Child object now 
VISIBLE to parent

Child TA rollback
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Transaction Types: long-running TA’s

 begin Commit

Read/ write

Rollback

A problem of long-running transactions is resource allocation as well as the 
increasing amount of work that would be lost in case of a rollback. Syncpoints 
move the fallback position forward towards the commit point.

A rollback will 
only go back to the 
checkpoint state

 syncpoint

Read/ write
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Transaction Types: Compensating TA’s

 begin Commit

Read/ write

Transaction throughput increases if objects become visible sooner –e.g. through a 
lose interpretation of the ISOLATION property. Now we need to 
COMPENSATE for the previous TA (which can no longer be rolled back). It 
depends on the application whether such compensating transactions are possible. 
Compensating transactions are also hand-coded if no transaction 
monitor/manager is available.

This is like a 
“logical” rollback

 commit  begin

 undo side-
effects of 
previous TA

System detects 
that commit was 
too early
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The interplay of transactions and persistence

begin()

findObject(Key)

DB

Data storeTransactional 
Service

factory
Lock table. Lock 
row(Key). Read Row-
data

Create object. Load it 
with data from row

objread();write(); Store changes 
temporarily

objCommit() Make changes 
permanent (commit)

Unlock resources

begin()

read();write();

Lock row. Load Obj. 
with data from row

obj

Store changes 
temporarily

The quality of the locks held during a TA is defined through “Isolation levels” in 
the Resource Manager. Please note that at the beginning of a new TA existing 
objects are RE-LOADED!
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Transaction Isolation Levels: ANSI

The ANSI/ISO SQL standard defines four levels of transaction isolation in terms 
of three phenomena that must be prevented between concurrent transactions. 

dirty reads: A transaction reads data written by concurrent uncommitted 
transaction. 

non-repeatable reads: A transaction re-reads data it has previously read and finds 
that data has been modified by another transaction (that committed since the initial 
read). 

phantom read : A transaction re-executes a query returning a set of rows that 
satisfy a search condition and finds that the set of rows satisfying the condition has 
changed due to another recently-committed transaction. 

(From the Postgres manual), see also IBM Knowledge center 
“Isolation Levels”
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Isolation Levels Explained

Also see his excellent “jepsen” blog, where he analyzes distributed systems correctness 
in popular  products (https://aphyr.com/tags/Jepsen). A generalized model  – independent 
of implementation – is given in Adya, Liskov, O'Neil, Generalized Isolation Level 
Defintions, (2000) http://bnrg.cs.berkeley.edu/~adj/cs262/papers/icde00.pdf 

Dirty Write (P0): w1(x) … w2(x) Prohibited by RU, RC, RR, 1SR
Dirty Read (P1): w1(x) … r2(x) Prohibited by RC, RR, 1SR
Fuzzy Read (P2): r1(x) … w2(x) Prohibited by RR, 1SR
Phantom (P3): r1(P) … w2(y in P) Prohibited by 1SR

“If you’re having trouble figuring out what these isolation levels actually allow, you’re not alone. The anomalies 
prevented (and allowed!) by Read Uncommitted, Read Committed, etc are derived from specific implementation 
strategies. If you use locks for concurrency control, and lock records which are written until the transaction commits (a 
“long” lock), you prevent P0. If you add a short lock on reads (just for the duration of the read, not until commit time), 
you prevent P1. If you acquire long locks on both writes and reads you prevent P2, and locking predicates prevents P3. 
The standard doesn’t really guarantee understandable behavior–it just codifies the behavior given by existing, lock-
oriented databases.”  From: https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster (Kyle Kingsbury)

There’s a neat kind of symmetry here: P1 and P2 are duals of each other, preventing a read from seeing an 
uncommitted write, and preventing a write from clobbering an uncommitted read, respectively. P0 prevents two writes 
from stepping on each other, and we could imagine its dual r1(x) … r2(x)–but since reads don’t change the value of x 
they commute, and we don’t need to prevent them from interleaving. Finally, preventing P3 ensures the stability of a 
predicate P, like a where clause–if you read all people named “Maoonga”, no other transaction can sneak in and add 
someone with the same name until your transaction is done.

https://aphyr.com/tags/Jepsen
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Transactions and Isolation Levels: Snapshot 
Isolation and MVCC

Snapshot Isolation works by guaranteeing a consistent snapshot on all reads when 
a transaction starts (basically by retrieving the last committed version). Updates 
will then only be committed, if there is no conflict with concurrent updates. 

In effect, multiple concurrent versions exist. Snapshot Isolation does not exhibit 
inconsistencies described by ANSI, but it is NOT serializable. 

Possible effects are write skew anomalies. MVCC based Tas allow a much higher 
concurrency rate, mostly due to the fact, that read locks are not held and there is no 
re-verification of values read during the TA. 

See wikipedia and M.Herlihy for MVCC,  
https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-
cluster (Kyle Kingsbury) for Snapshot Isolation (Oracle)
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Write Skew Anomalies

TA 1's update on Account 1 depends on information from 
Account 2. Account 2 changes during TA 1. Both transactions 
commit on stale read values but the updates do not conflict.

Solution: forced serializability e.g. with “Select for update” 
command. Does this work for distributed TA's???

Account 1 Account 2 

TA 1 TA 2

Read  A2
Read  A1

Update A1 Update A2
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Transaction Isolation Levels: Implementations

Again from: https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster. 
“SNAPSHOT ISOLATION lies between Read Committed and Serializable, but is neither 
a superset nor subset of Repeatable Read.”

https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster
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Transaction Isolation Levels: Phenomena

Isolation 
Level/Effects

Dirty Read 
(cells read change 
during TA. Locked 
cells can be read)

Non-Repeatable Read
(rows change during TA, 
changed or locked rows 
can be read)

Phantom Read Write skew anomalies

Read uncommitted possible possible possbile possible

Read commited NO possible possible NO/Yes, depending on 
implementation

Repeatable read
Read stability

NO/NO NO/NO NO/possible NO (no access to 
locked cells)

Serializable NO NO NO NO (linearized)

Snapshot Isolation NO NO NO possible

Cursor Stability Like read committed

Consistent Read Like snapshot isolation?

Serializable Snapshot 
Isolation

NO NO NO NO (forced write 
collisions)

Make sure that your resource managers and the transaction controller all work with the 
same level of isolation and that it is appropriate for your application. Higher levels mean 
lower performance. Do not try to change levels within transactions! Compare vendor 
isolation labels with the description of their effects...
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Transaction Isolation Levels: Defaults

From Peter Bailis, When is “ACID” ACID? Rarely! Note: Oracle and SAP do not provide 
serializability at all – even if they use the term! 



55

The Base: File System Consistency
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File Systems Block Order Guarantees

BOB, the Block Order 
Breaker, is used to find 
out what behaviours are 
exhibited by a number of 
modern file systems that 
are relevant to building 
crash consistent 
applications.

from: 
http://blog.acolyer.org/2
016/02/11/fs-not-equal/
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Crash-Consistent Applications

All File Systems are Not Created Equal: On the Complexity of 
Crafting Crash Consistent Applications – Pillai et al. 2014
Discussion: http://blog.acolyer.org/2016/02/11/fs-not-equal/

ALICE, the 
Application Level 
Intelligent Crash 
Explorer explore the 
crash recovery  on 
top of file systems.
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Eventually Consistent Storage Systems
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Consistency without Coordination

“The rise of Internet-scale geo-replicated services has led to 
upheaval in the design of modern data management systems. 
Given the availability, latency, and throughput penalties associated 
with classic mechanisms such as serializable transactions, a broad 
class of systems (e.g., “NoSQL”) has sought weaker alternatives 
that reduce the use of expensive coordination during system 
operation, often at the cost of application integrity. When can we 
safely forego the cost of this expensive coordination, and when 
must we pay the price?”

From: Coordination Avoidance in Distributed Databases by
Peter David Bailis, Doctor of Philosophy in Computer Science
University of California, Berkeley
http://www.bailis.org/papers/bailis-thesis.pdf 



60

Forces behind NoSQL
- Web2.0 brings user generated content: much more writes!

- Social Networks create huge datasets with structures difficult for relational Dbs 
(graph processing, sparse data)

- Fast growing sites need a storage layer that scales horizontally

- Fast growing sites want schema-less storage

- Data frequently unstructured – need map/reduce for scan

- Data processing mostly sequential

- Queries against RDBMs anyway too expensive and not possible with shards

- Joins and queries scale against RAM based caches/DBs

- Application servers scale better horizontally than RDBMs

- Scaling storage needs to be automatic

- User data allow less than ACID processing sometimes

- ACID does not work across shards very well

RDBMs did too much in some cases and too little in others 
(M.Stonebreaker). 



61



62

The fundamental scaling Problems of 
RDBMs

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales 
where relational databases don't. 
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/

The poor time complexity characteristics of SQL joins; O(m+n) or worse

The difficulty in horizontally scaling; Loss of joins or jumping between nodes

The unbounded nature of queries; A query can kill a DB und load

Optimized for storage efficiency (no duplicates), integrity and flexibility of 
access through arbitrary joins.

SELECT user_id, sum(amount) AS 
total_amount
FROM orders
GROUP BY user_id
ORDER BY total_amount DESC
LIMIT 5 
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NoSQL Storage Systems

NoSQL Design Patterns 

Stores with probabilistic guarantees: 

AP-Stores: Dynamo, Cassandra, CouchDB, MongoDB, Riak 
etc.

Stores with strong guarantees:

CALM (bloom lang),

CRDTs: Convergent/Consistent Replicated  Data Types 
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NoSQL Design Patterns

- Partition keys with many 
distinct values

- All data in one table with 
hierarchical modeling and 
de-normalization

- Values evenly requested

- Use composite secondary 
keys for 1:n, n:n, queries

- limited query responses 
(with paging token)

 

- understand the use case

- know you access patterns 
before data layout

- Avoid relational modeling

- data integrity is an 
application concern

- data storage efficiency is 
no concern

Great overview from R. Houlihan at re:event 2018: 
https://www.portal.reinvent.awsevents.com/connect/sessionDetail.
ww?SESSION_ID=22972

https://www.portal.reinvent.awsevents.com/connect/sessionDetail.ww?SESSION_ID=22972
https://www.portal.reinvent.awsevents.com/connect/sessionDetail.ww?SESSION_ID=22972
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AntiPattern1: hot keys

From Houlihan. A key with a small range of values prevents 
horizontal scaling 
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AntiPattern2: Relational OLTP

From Houlihan. Relational OLTP is flexible (analytical) but does 
not scale horizontally
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AntiPattern3: Overwriting data

From Houlihan. Keep versions and update only current version. 
This can easily be done atomically.
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AntiPattern 4: Pagination

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales where 
relational databases don't. 
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/

Do not ask for ALL your data!
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Dynamo: Always Writeable AP Key/Value Store

Must see:  on Dynamo Design Patterns: Rick Houlihan
https://www.youtube.com/watch?time_continue=9&v=HaEPXoXVf2k

https://www.youtube.com/watch?time_continue=9&v=HaEPXoXVf2k
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Dynamo Application Area: Shopping Cart Example

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. 
The Dynamo design principles need to be known by clients. Not every use-case can be 
mapped to an eventually consistent store.

Storage Cluster

Failed shopping cart

Client

New version

 conflict

timestamp_j

timestamp_k
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Automatic - Reconciliation Approach

“last write wins” strategy. After:G. DeCandia et.al. Dynamo can automatically try to 
reconcile different versions across replicas. 

New version

 Older 
version

timestamp_k

timestamp_j
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Client/Business – Reconciliation Approach

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. 
The client gets all available versions to choose or merge. This is a business-driven strategy. 
For an idea on the complexity behind such “compensation” schemes, see: P.Bailis, 
A.Ghodsi,  Eventual Consistency Today: Limitations, Extensions, and Beyond. How can 
applications be built on eventually consistent infrastructure given no guarantee of safety? 
In 11/3 acmqueue

Storage Cluster

Failed shopping cart

Client

New version

 conflict

timestamp_k

timestamp_j

Merge both 
versions!
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Dynamo Design Principles

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. 
Support for heterogeneous hardware requires the concept of “virtual” nodes. Key spaces 
are assigned to virtual nodes.

- No master (decentralized)
- heterogeneous hardware
- symmetric peers
- incrementally scalable
- eventually consistent
- trusted environment needed
- replication support (conf.)
- “always write” enabled (conflict 
   resolution during read)
- multi-version store with conflict  
  resolution policies

Client
W

rit
e

Read
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Horizontal Scaling

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales where 
relational databases don't. 
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/
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Dynamo-Technology

After:G. DeCandia et.al. Dynamo allows clients to define the number of replicas (n).
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Dynamo Software Architecture

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. 
For writes, a coordinator node is picked from the preference list for this key space. Usually 
the fastest node that answered the last read request is chosen. This makes “read-your-writes 
consistency more likely and causes fewer SLA violations.

Request Coordination

Membership/Failure

Local Persistence Eng.

Storage Engine
Plug-In

Collect versions from 
other nodes, 
reconciliate if 
requested. Generate 
Vector Clock for 
combined version. 
Perform read-repair 
on outdated nodes.

Java 
NIO
Event
Proc.

State
Mach.

State
Mach.State

Mach.
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Dynamo-DHT: Placement vs. Partitioning

After:G. DeCandia et.al. Dynamo uses an enhanced consistent hashing algorithm to 
balance load between nodes and to minimize changes when nodes join or leave the ring. 
Equally sized key spaces allow efficient copying of spaces across machines. A gossip 
protocol distributes key space and node information across the ring. (An alternative would 
be to use a DHT approach directly to locate a machine that “knows” where to find the 
required information)

Key spaces of equal size 

Positions in the ring, assigned to virtual hosts 

Virtual nodes resp. for 
key space and replicas
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DHT: Membership-Change (Join)

After:Ricky Ho, NOSQL Patterns. 
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DHT: Membership-Change (Leave)

After:Ricky Ho, NOSQL Patterns.  Interestingly, the leaving of a real node – probably due 
to a crash – should not be considered a permanent thing, causing re-balancing of the ring. 
Most likely, the node will be replaced shortly. Dynamo uses an explicit error handling 
protocol to add and remove nodes to avoid unnecessary overhead.
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Dynamo “Sloppy Quorums”

 After:G. DeCandia et.al. “All read and write operations are performed on the first N 
healthy nodes from the preference list, which may not always be the first N nodes
encountered while walking the consistent hashing ring.” Node E will temporarily store 
replicas for D and later transfer those back to D.

Temp. 
Replica for 
D's keys

Transfer
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Dynamo Versioning and Reconciliation

 After:G. DeCandia et.al. A client reading D will get D3 and D4 versions and needs to 
reconcile them into a new version (D5). Dynamo will then distribute D5 as the new version 
and discard older D's.

D2 is descendant of D1

D3 and D4 are 
causally unrelated 
versions (conflict)
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Read Processing with VC

 After:Ricky Ho, NOSQL Patterns. A replica keeps a counter for every key and also the 
version state from other replicas (conflicts)
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Update Processing with VC

 After:Ricky Ho, NOSQL Patterns. An update reconciles different versions into a new one 
– or gets thrown away, if it is based on an outdated vector clock.
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High-Performance Read Engine

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. In 
case of much more reads than writes, it is OK that writes are slow.

N-Storage Cluster

Client

W == N 

R == 1
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Background Anti-Entropy

After: Bharatendra Boddu, Using Merkle trees to detect inconsistencies in data 
(http://distributeddatastore.blogspot.de/2013/07/cassandra-using-merkle-trees-to-
detect.html). Two replicas exchange Merkle hash-trees instead of whole volumes (gossip 
protocol).  Hash-trees allow fast detection of changes in branches by only comparing 
hashes. In case of differences, replicas perform bulk-updates. Note that anti-entropy needs 
to work asynchronously in the background!
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Dynamo Configuration

R: Number of replicas for a read operation
W: Number of replicas for an update operation
N: Number of replicas wanted

After Werner Vogels, http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
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AP-Column-Store: Cassandra
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BigTable Cluster Architecture

After: Ricky Ho, BigTable Model with Cassandra and Hbase. This Architecture can be realized e.g. with a DHT storage layer. 
Also search engines use the option to scale both data size and request numbers independently.
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BigTable Column Store Concept

After: Ricky Ho, BigTable Model with Cassandra and Hbase. Columns allow sequential processing at high speed. They can 
easily deal with empty fields (a user could have 0 or millions of followers).
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BigTable Column Families Concept

After: Ricky Ho, BigTable Model with Cassandra and Hbase. RowIds for different column families can have different types. 
Applications use this to build an index. In the above case, the user names could be a rowId for a ColumnFamily that has u[1-n] 
 as a key and an empty value.
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BigTable Column-Oriented Store

After: Ricky Ho, BigTable Model with Cassandra and Hbase. A key concept for processing large numbers of writes is to use 
sequential, append only writes. On disk, data is stored using Sorted String Tables (SSTable). These tables are never 
overwritten and algorithms can rely on that! Periodically they are collected and recombined into a new table using a simple 
sorted merge. The commit log serves as a backup, if there is a problem with in-memory tables. The concept comes originally 
from Google BigTable.



92

Log Structured Merge Trees (LSM)

After:Dmitri Babaev, Cassandra vs. Hbase. The diagram shows memory and disk parts as well as the WAL (write ahead log) 
to secure persistence and consistence in case of a crash. http://de.slideshare.net/DmitriBabaev1/cassnadra-vs-hbase

See also: Chris Lohfink, LSM Trees – A high level overview of read/write paths (with examples of updates) 

Sorted strings
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Log Structured Merge Trees (LSM)

After: O'Neil,   Cheng,  Gawlick,  O'Neil, The Log-Structured Merge-Tree (LSM-Tree). When a key space in memory becomes 
too big, it gets merged with on-disk content. Nothing is overwritten. Lit: Pat Helland, Immutability changes everything! (an 
overview of techniques based on immutable data) http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf C0 and C1 
parts are merged with a “rolling merge” technique (like merge sort).

http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
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LSM vs. Btree

After: https://tikv.github.io/deep-dive-tikv/key-value-engine/B-Tree-vs-Log-Structured-Merge-Tree.html

Write amplification: db-
writes/storage writes
Read amplification: disk 
reads/query
Storage amplification: 
db-size/storage size

https://tikv.github.io/deep-dive-tikv/key-value-engine/B-Tree-vs-Log-Structured-Merge-Tree.html
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Bloom-Filter to save Disk-Access

After: Ricky Ho, BigTable Model with Cassandra and Hbase.  The bloom filter checks, whether a key is in a SSTable. This is 
pretty fast and the lookup algorithm knows, that SSTables do not change later! Only if the bloom filter comes back with a 
negative, an expensive SSTable seek is performed. Bloom filters allow false positives though and you cannot remove an element 
later (which is anyway no issue here). See: http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html by 
Jonathan Ellis. The filter works like this: A key is run through k different hash functions and the results are marked in a 
memory array. The hashes from the 3 elements X,Y,Z have been inserted into the array. A fourth one, W,  is not contained in 
the array because one hash position is not marked (0). There are no false negatives – which is quite obvious, because inserting 
means marking the array! 

Diag: D.Eppstein, wikipedia

http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html
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Another Example of Write-Once Logic

After: Ricky Ho,NOSQL patterns. This is an example form the CouchDB architecture. Just one atomic test-and-swap 
mechanism can consistently update a store. Write-once data structures are also easy to cache and algorithms do not need to re-
read data. Also: Pat Helland, Immutability Changes Everything CDIR15, 



97

CouchDB Storage Structure

After: Ricky Ho,NOSQL patterns. This is an example form the CouchDB architecture. Log-file management is very similar to 
BigTable approaches. 
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Customizations and Guarantees

After: Ricky Ho, BigTable Model with Cassandra and Hbase. These trade-offs are quite typical for eventually consistent 
stores. Surprisingly many applications can live successfully with those restrictions.

- R/W/N selection decides about consistency levels
- Only atomic update of a row. 
- No multi-row transactions
- Indexes for reverse lookup by applications
- Danger of overwriting intermediate changes (lost 
update)
- Failed updates (write-quorum not reached) leave 
some replicas updated. Through anti-entropy 
copying, those can distributed through the store. 
Clients need to repeat failed updates and deal with 
duplicates.
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Cassandra on AWS

After: Jorge Rodriguez,  Global Cassandra on AWS EC2 at BloomReach. The problem shown is the combination of an elastic 
resource (EMR) with a fixed cluster. BloomReach finally used a request throttling strategy to ease cluster load. They describe 
more optimizations in their paper, e.g. elastic cassandra.
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NewSQL: The Comeback of SQL?
- SQL Overlays for query processing

- Unified DB storage types (key/value, doc, columns, tables)

- Support for advanced isolation and consistency models

- Example: CockroachDB two excellent papers: 
https://www.cockroachlabs.com/blog/consistency-model/

https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd
/

The first paper tries to give a unified view on serializable and 
linearizablle features in NoSQL/NewSQL Dbs. The second 
tells the difference between higher level DB and storage 
engines.

Dealing with eventual consistency and maintaining several 
different NoSQL databases within one application becomes very 
cumbersome...

https://www.cockroachlabs.com/blog/consistency-model/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
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Beyond Relaxed Consistency...
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Beyond Relaxed Consistency...

If distributed consensus is too expensive, and relaxing consistency 
not good enough, a look at algorithms and data structures which 
are insensitive to ordering might pay off. Lit: M.Shapiro: A 
comprehensive study of CRDTs

- Order insensitive (CALM) processing. EC       programs 
that follow monotonic logic principles

- State-based CRDTs (Converging replicated Data Types)
- Operation-based CRDTs
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The CALM Principle

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. 
Marczak, Consistency Analysis in Bloom: a CALM and Collected
Approach. Monotonic program parts are safe under eventual 
consistency (P.Bailis)

“the tight relationship between Consistency And Logical 
Monotonicity. Monotonic programs guarantee eventual 
consistency under any interleaving of delivery and 
computation. By contrast, non-monotonicity—the 
property that adding an element to an input set may 
revoke a previously valid element of an output set—
requires coordination schemes that “wait”
until inputs can be guaranteed to be complete.”
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CALM Operations

Logically monotonic:

-  initializing variables,
- accumulating set members,
- testing a threshold condition

non-monotonic:

- overwriting variables,
- set deletion, 
- resetting counter
- negation 

P.Bailis, A.Ghodsi,  Eventual Consistency Today: Limitations, Extensions, and Beyond
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Order of 
execution/argu
ments does not 

matter!

Service is either a 
natural or our 

protool needs to 
achieve it!

No synchronization 
Needed!

CALM Design Patterns



107

State-based CRDTs

State-based CRDTs calculate the new result at one node and then propagate the result to 
replicas. The data structure needs to be commutative, associative and idempotent. This is 
e.g. true for sets. 
See: Arnout Engelen, CRDTs illustrated, Strangeloop 2015 

Value a:4

client

P
lu

s:
 a

,6
Value a:4

a=10
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Operation-based CRDTs

Operation-based CRDTs send the requested operation to each replica and the results are 
calculated locally. The operations need to be commutative with “exactly once” semantics 
(idempotent) and in fifo order. Those delivery guarantees are rather hard to guarantee and 
therefore state-based CRDTs are currently more popular. 
See: Arnout Engelen, CRDTs illustrated, Strangeloop 2015 

Value a:4
→ 10

client

P
lu

s 
a,

6
Value a:4
→ 10Plus a,6
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“Bending the Problem”

”A key property of these advances is that they separate data store and application-level 
consistency concerns. While the underlying store may return inconsistent data at the level 
of reads and writes, CALM, ACID 2.0 and CRDT appeal to higher-level consistency 
criteria, typically in the form of application-level invariants that the application maintains.

Instead of requiring that every read and write to and from the data store is strongly
consistent, the application simply has to ensure a semantic guarantee (such as "the counter 
is strictly increasing")—granting considerable leeway in how reads and writes are 
processed.”

(P.Bailis et.al.) 
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“Bending the Problem”: Counting Track-Views 

Peter Bouton, Soundcloud, Consistency without consensus in 
production systems, Strangeloop 2015. Symmetric difference 
allows to find missing elements. Fixing is idempotent.

 Tracks:
{} {123              } 
{}

 Tracks:
{} {123,   456          
} {}

 Tracks:
{} {123,  456           
  } {}

Uid 123 listening track X 

Uid 456 listening track X 

?

{124,456}Δ{123}Δ{124,456} = 
{456}
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Examples of CRDTs
Counters: 
Grow-only counter (merge = max(values); payload = single integer)

Positive-negative counter (consists of two grow counters, one for increments and another for decrements)

Registers:
Last Write Wins -register (timestamps or version numbers;

merge = max(ts); payload = blob)

Multi-valued -register (vector clocks; merge = take both)

Sets:
Grow-only set (merge = union(items); payload = set; no removal)

Two-phase set (consists of two sets, one for adding, and another for removing; elements can be added 
once and removed once)

Unique set (an optimized version of the two-phase set)

Last write wins set (merge = max(ts); payload = set)

Positive-negative set (consists of one PN-counter per set item)

Observed-remove set

From: “Distributed Systems for fun and profit”
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Distributed Configuration and 
Orchestration

When the power in a warehouse computing 
center is turned on....
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“An Oracle is needed”...

- Configuration changes and notifications

- Update of failed machines

- Dynamically integrate new machines/deconfiguration

- Elastic configuration with partial failures

- API for watches, callbacks, automatic file removal, triggers

- Simple data model (directory tree model)

- High performance, highly available in-memory cluster solution

- No locks for updates but total ordering of requests for all cluster replicas

- All replicas answer reads

- wait-free implementation of coordination service with client API performing 
locks, leader-selection etc. 

Benjamin Reed, Zookeeper, the making of. 
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Becomes Distributed Coordination...

wait-free implementation (request ordering) of coordination service with client 
API implementing locks queues, barriers, leader-selection, group membership 
etc. From: Benjamin Reed, Zookeeper, the making of. 

Client

Coordination 
Libraries
 (“Recipes)

Leader

Zookeeper 
cluster
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Zookeeper  

TA-log, snapshot, 

Writes, updates
Snapshots,
Transaction log

In-memory
Repl. data

Strictly ordered (stamped) 
updates to backup servers

Mostly read clients

reads
writes

disk

Triggers, 
heartbeat
Triggers, 
heartbeat
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Directory-like Namespace

znodes

Znodes are like files which can be directories as well. 
They can be updated atomically. Znodes are versioned 
and changes can be “watched” by clients.
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Use Case 1: Service Monitoring

znodes

Updates are atomic. Events delivered by server order. 
The coordination service keeps state in a replicated DB. 

services

www

monitored

AP1: …. , up
AP2:........, downMonitoring

service

Watch 

Update events
APn

APn
APn

updates
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Use Case 1: Self-Organized Boot

znodes

Additional protocols allow leader election, service location etc. 
Locking must be supported too. Configuration files do not work 
in a cluster environment

services

www

database

DB2: Primary
DB1: Secondary

writeDB1

DB2

updates

client
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follower

Leader 
election

Leader 
election

2 
follower
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Liveness and Correctness

• Sequential Consistency - Updates from a client will be applied in the 
order that they were sent.

• Atomicity - Updates either succeed or fail. No partial results.

• Single System Image - A client will see the same view of the service 
regardless of the server that it connects to.

• Reliability - Once an update has been applied, it will persist from that 
time forward until a client overwrites the update.

• Timeliness - The clients view of the system is guaranteed to be up-to-date 
within a certain time bound.
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Zookeeper API

create: creates a node at a location in the tree

delete: deletes a node

exists: tests if a node exists at a location

get data: reads the data from a node

set data: writes data to a node

get children: retrieves a list of children of a node

sync: waits for data to be propagated
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Primary-Order Atomic Broadcast with Zab

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini, Zab: High-performance broadcast for
primary-backup systems

● A primary sends non-commutative, incremental state changes 
to backup units

● The order of incremental changes is kept even in case of a 
primary crash

● Multiple outstanding requests are possible
● An identification scheme prevents re-ordering of updates
● A synchronization phase prevents new updates from being 

stored before old updates are delivered.
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Consistency Requirements for ABCast

Validity: If a correct process broadcasts a message, then all correct 
processes
will eventually deliver it.

Uniform Agreement: If a process delivers a message, then all 
correct processes
eventually deliver that message.

Uniform Integrity: For any message m, every process delivers m at 
most once,
and only if m was previously broadcast by the sender of m.

Uniform Total Order: If processes p and q both deliver messages m 
and m0,
then p delivers m before m0 if and only if q delivers m before m0.

No gaps!

Same order!
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Primary Order 

Local primary order: If a primary broadcasts (v, z) before it broadcasts 
(v'; z'), then a process that delivers (v,z) must have delivered (v',z') 
before  (v,z).

Global primary order: Suppose a primary Pi broadcasts  (v,z), and a 
primary Pj > Pi broadcasts (v',z'). If a process delivers both  (v,z) and 
(v',z'), then it must deliver  (v,z) before (v',z').

Primary integrity: If a primary Pe broadcasts  (v,z) and some process 
delivers (v',z') which was broadcast by Pe' < Pe, then Pe must have 
delivered (v',z') before broadcasting  (v,z).

FiFo 
order!

No gaps!

After: ZooKeeper's atomic broadcast protocol:Theory and practice, 
Andre Medeiros
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Zab Protocol

After: ZooKeeper's atomic broadcast protocol:Theory and practice, 
Andre Medeiros.  

Peers try to find a 
leader, store votes 
in vol.mem.

Leader tries to find 
the most up-to-
date sequence of 
TA's in a quorum.
New epoch 
defined

Leader suggests 
TA's to followers 
who miss some. 
Quorum 
acceptance 
establishes leader

Broadcast layer is 
ready to perform 
new state changes 
under the new 
leader.
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Zab Protocol Phase 1: Discovery

After: ZooKeeper's atomic broadcast protocol:Theory and practice, 
Andre Medeiros. Peers try to find a leader, store votes in vol.mem.

Own history more current!

Accept new epoch!

Collect most up-to-date history from peers 

Non-volatile!
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Zab Protocol Phase 2: Synchronization

After: ZooKeeper's atomic broadcast protocol:Theory and practice, 
Andre Medeiros. Leader suggests TA's to followers who miss some. 
Quorum acceptance establishes leader

Update local history and store it

Update peers and commit

Never accept requests from an older 
(smaller) epoch!

Leader got quorum for updates. Peers 
deliver their history to application
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Zab Protocol Phase 3: Broadcast

After: ZooKeeper's atomic broadcast protocol:Theory and practice, 
Andre Medeiros. Broadcast layer is ready to perform new state changes 
under the new leader.

A new peer joined needs to be updated

New update with new TA number

Non-volatile or volatile?

Wait until all previous TA's have arrived and 
deliver TA's in order to application.
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ABCast Implementations

One of the best reads about implementation: T. D. Chandra, R. 
Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing. ACM,
2007, pp. 398–407. Learn how fault-tolerance can mask errors etc.

- Implementing the theoretical invariants of such protocols is hard

- Non-volatile stores hurt performance and throughput

- Error detection is needed to recover from async. Protocol

- Frequent leader changes hurt throughput

- Consistency sometimes lowered for performance reasons

- Watch out for Byzantine errors like disk failures
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Highly-Available Transactions
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HA Transactions

P.Bailies et.al., HA Transactions, Virtues and Limitations. HATs offer a 
one to three order of magnitude latency decrease compared to 
traditional distributed serializability protocols,  and they can provide 
acceptable semantics for a wide range of programs, especially those 
with monotonic logic and commutative updates 

- Transactional  guarantees that do not suffer unavailability during system partitions 
or incur high network latency. (Non-failing Replica MUST respond)
- Not CAP: linearizability as being able to read the most recent write from a replica
- Not: Serializability, Snapshot Isolation and Repeatable Read isolation are not 
HAT-compliant
-  Read  Committed isolation, transactional atomicity, etc. are possible with 
algorithms that rely on multi-versioning and limited client-side  caching. 
-  causal  consistency with phantom prevention and ANSI Repeatable Read need 
affinity with at least one server (sticky sessions) 
- HA systems are fundamentally unable to prevent concurrent updates to shared  data 
items and cannot provide recency guarantees for reads
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HA-Transactions

Highly Available Transactions: Virtues and Limitations (Extended Version), Peter Bailis, 
Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica, 
http://arxiv.org/pdf/1302.0309.pdf
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Consistency Models

From: Caitie McCaffrey, Building Scalable Stateful Services, 
Strangeloop 2015
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Consistency with Sticky Sessions

From: Caitie McCaffrey, Building Scalable Stateful Services, 
Strangeloop 2015



135

The World's Worst Distributed DB...

Uses approximately the same amount of electricity as could power an average American 
household for a day per transaction.
Supports 3 transactions / second across a global network with millions of CPUs/purpose-built 
ASICs.
Takes over 10 minutes to “commit” a transaction
Doesn’t acknowledge accepted writes: requires you read your writes, but at any given time 
you may be on a blockchain fork, meaning your write might not actually make it into the 
“winning” fork of the blockchain (and no, just making it into the mempool doesn’t count). In 
other words: “blockchain technology” cannot by definition tell you if a given write is ever 
accepted/committed except by reading it out of the blockchain itself (and even then)
Can only be used as a transaction ledger denominated in a single currency, or to 
store/timestamp a maximum of 80 bytes per transaction

But it is auditable and completely decentralized!

Toni Arcieri, On the dangers of a blockchain monoculture, 
https://tonyarcieri.com/on-the-dangers-of-a-blockchain-monoculture
Maurice Herlihy, Blockchains From a Distributed Computing Perspective, 
ommunications of the ACM, February 2019, Vol. 62 No. 2, Pages 78-85
10.1145/3209623

https://tonyarcieri.com/on-the-dangers-of-a-blockchain-monoculture
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Resources (1)
Daniel Abadi, Problems with CAP and Yahoo's little known NoSQL system, http://dbmsmusings.blogspot.de/2010/04/problems-with-

cap-and-yahoos-little.html

Java Data Objects Version 1.0 (www.java.sun.com) 

Concurrency Control and Recovery in Database Systems, Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman

     http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx (free book)

Multi-Version-Concurrency-Control (MVCC), http://research.microsoft.com/en-us/people/philbe/chapter4.pdf

Davidson, Garcia-Molina, Skeen, Consistency in Partitioned Networks, 
http://www.cs.cornell.edu/courses/CS614/2004sp/papers/DGS85.pdf

Making Snapshot Isolation Serializable, Fekete, Liarokapis, O'Neil, O'Neil, Shasha, 
http://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf

Fekete, Goldrei, Asenjo, Quantifying Isolation Anomalies, http://www.vldb.org/pvldb/2/vldb09-185.pdf

Alvaro, Conway, Hellerstein, Marczak, Consistency Analysis in  BLOOM: A CALM and Collected Approach, 
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf

Arjun Narajan, https://ristret.com/s/f643zk/history_transaction_histories (perfect intro to Tas and serialization)

Atul Adya, PhD Thesis,  Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions

http://www.vldb.org/pvldb/2/vldb09-185.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://ristret.com/s/f643zk/history_transaction_histories
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Resources (2)

• Colouris et.al., Chapters 12 an 13
• Ken Birman, Building secure and reliable network 

applications, Chapter 21 (Transactional Systems).
• Grey/Reuters, Transaction Processing (The bible of TA’s)
• The Postgres manual (for isolation levels)
• Don Chamberlain, Universal Database (even though it’s on 

DB2 and UDB he knows how to explain the database stuff 
perfectly – easy to read as well!)

• Meet the experts: Gang Chen on Transactions. Details of 
Websphere TA processing for J2EE architecture. With 
further links. 
http://www-128.ibm.com/developerworks/websphere/libra
ry/techarticles/0502_chen/0502_chen.html 
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Resources (3)
Java Communicating Sequential Processes. Middleware that implements Hoares CSP in Java. Excellent introduction by Abhijit 

Belapurkar on http://www.developers.net/node/view/849 (three parts with many links, e.g. on Pi-calculus for mobility, 
model checker for parallel process networks

Serializability Theory for replicated data, http://research.microsoft.com/en-  us/people/philbe/chapter8.pdf 

Analysis of Replication and Replication Algorithms in. Distributed System. Nikhil Chaturvedi. Prof. Dinesh Chandra Jain. 
http://www.ijarcsse.com/docs/papers/May2012/Volum2_issue5/V2I500414.pdf

Benjamin Reed, Zookeeper, the making of. https://developer.yahoo.com/blogs/hadoop/apache-zookeeper-making-417.html

Zookeeper Overview, Apache, https://zookeeper.apache.org/doc/trunk/zookeeperOver.pdf

Marco Serafini, Zab vs. Paxos (primary-backup vs. state-machine-replication) 
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab+vs.+Paxos

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serani. Zab: High-

performance broadcast for primary-backup systems. In DSN, pages 245{256. IEEE,

2011. ISBN 978-1-4244-9233-6 (crash-recovery model).

Call-me-maybe: MariaDB Galera Cluster, https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster (Kyle Kingsbury)

“Jepsenblog Series” by Kyle Kingsbury on Distributed Systems Correctness: aphyr.com/posts/jepsen

ZooKeeper's atomic broadcast protocol:Theory and practice,  Andre Medeiros

T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An engineering perspective,” in PODC ’07: Proceedings of 
the twenty-sixth annual ACM symposium on Principles of distributed computing. ACM, 2007, pp. 398–407

G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehensive study,” ACM Comput. 
Surv., vol. 33, pp. 427–469, December 2001.

Tyler Treat, https://bravenewgeek.com/building-a-distributed-log-from-scratch-part-1-storage-mechanics/ (parts 1 to 5)

https://bravenewgeek.com/building-a-distributed-log-from-scratch-part-1-storage-mechanics/
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Resources (4)
      Peter Bailis, When ist “ACID”  ACID? Rarely! http://www.bailis.org/blog/when-is-acid-acid-rarely/

      Peter Bailis, HAT, not CAP: Introducing Highly Available Transactions, Feb. 2013, 
http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/

Peter Bailis et.al., Highly Available Transactions: Virtues and Limitations, (Extended Version)

Marc Shapiro, A comprehensive study of Convergent and Commutative Replicated Data Types, Shapiro et al., 2011

Pat Helland, Immutability changes everything! (an overview of techniques based on immutable data) 
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Adrian Colyer, Bolt on Causal Consistency, http://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/, morning paper on 
Bailis et.al, http://www.bailis.org/papers/bolton-sigmod2013.pdf

A.Colyer, ‘Cause I’m Strong Enough: Reasoning About Consistency Choices in Distributed Systems, February 3, 2016,

http://blog.acolyer.org/2016/02/03/the-rule/

Understandable RAFT visualization: http://thesecretlivesofdata.com/raft/

http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
http://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/
http://www.bailis.org/papers/bolton-sigmod2013.pdf
http://blog.acolyer.org/2016/02/03/the-rule/
http://thesecretlivesofdata.com/raft/
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