
Distributed Services and Algorithms
Part 2

Lecture on

Living (faster) with Uncertainty

Walter Kriha

2

Distributed Operating Systems II

RPsAPs

Fan-Out
Services

Dist.File
Sys

Sharded
RDBMs

NoSQL
DB

Repl.
Cache

Async
Queues

Schedul
er/
Lockin
g

Batch
(m/r)
Worker

Realtime
Streams
Proc.

Internal
Monitoring

All systems clustered. RPC/Rest
used for communication.

Search
Service

DataCenter US
Data
Center
Europe

3

When the Truth is Prohibitively Expensive

“Stop relying on strong consistency. Coordination and distributed
transactions are slow and inhibit availability. The cost of knowing the
“truth” is prohibitively expensive for many applications. For that matter,
what you think is the truth is likely just a partial or outdated version of it.

Instead, choose availability over consistency by making local decisions
with the knowledge at hand and design the UX accordingly. By making
this trade-off, we can dramatically improve the user’s experience—most of
the time.” Tyler Treat, Distributed Systems Are a UX Problem,
www.bravenewgeek.com

The quote shows a new understanding of consistency.
It all started with CAP and now it is taken further and
further, including cheating and bending the problems...

http://www.bravenewgeek.com/

4

Fast read/write vs. read your writes

Pat Helland, Scale By The Bay 2018, Keynote III Mind Your
Sta.mp4

5

Overview

- classic (ACID) distributed consistency
 Distributed 2P locking
 Distributed 2PC consensus
- ACID 2.0 eventual (coordination-free) consistency
 - CAP and its children, CALM, CRDTs etc.
 - distributed replication (cassandra etc.)
 - CALM (bloom) consistency
 - CRDTs
- Distributed Coordination (chubby, zookeeper)
 - distributed consensus protocols
 - Cluster scheduler (borg)

6

Classic (ACID) Distributed Consistency

- Distributed Objects and Persistence
- ACID
- Transactions
- Isolation Levels
- Two-Phase Locking
- Distributed Transactions
- Two-Phase Commit (2PC)
- Failure Models for 2PC

“Transaction processing expert Phil Bernstein suggests that
serializability typically incurs a three-fold performance penalty on a
single-node database compared to one of the most common weak
isolation levels called Read Committed! (P.Bailis, Readings in
Database Systems, 2015, ch.6 Weak Isolation and Distribution)

7

Persistent Distributed Objects

8

Persistent Object Representations

Proxy Rep. row

table

Data storesDist. Service/
Server

Client

The real storage object lives in a data store and uses data store concepts for storage,
e.g. a row in a table. The service works with object representations (“Incarnations”
according to Emmerich) and provides the illusion of a persistent object to clients. The
Java Connector Architecture provides an adapter interface for resource managers.

mapping

Rep.Rep.

9

Mechanisms for Persistence

1) Use an SQL Driver to store object state. Suffers from
“impedance mismatch” and needs to control locking etc. in the
service.

2) Use an object/relational mapper (e.g. EJB/Hibernate) to store
object state transparently for the programmer.

Just storing an object is simple. Doing this in a way that protects
from concurrent access, system failures and across different data
stores is much harder.

10

Persistent Object Mapping

The key to persistent mapping is meta-information. It is used to
generate both the object representations for a service and the
code necessary for the data store to store the objects with its own
mechanisms and objects. Enterprise integration software also
specializes in this kind of mapping.

Mapping specification:

Class X to table Y

fieldA to column 1, tagged as primary key

fieldB to column2

Class X {

Int fieldA;

String fieldB; }

Create Table Y,

1 integer (primary key) ,
2 string

Object view Data store view

11

Object Mapping Approaches

Inheritance creates difficult problems for table mapping. Either
performance or flexibility suffer. EJB e.g. does not allow
inheritance. A special problem is the extension of a type (class),
i.e. to determine all the objects of a type.

Class X {

Int fieldA;

String fieldB; }

Create Table Z,

0 Type of object

1 integer (primary key) ,
2 string

3 integer (only derived)

Object view

Class Y extends X{

Int fieldC;}

Create Table Y,

1 integer (primary key) ,
2 string

Create Table Z,

0 foreign key into Y

1 integer (primary key) ,

what if more derived
classes come?

two table
accesses needed

12

Locking and Consensus

A Rep. row

table

Dist. serviceClients

The diagram shows two problems: The yellow object is being shared between clients.
Objects have state which needs to be consistent between calls. That's why we need locking.
Client A uses two objects from different storage systems. Both systems need to agree about
changes to achieve atomicity of a unit of work. That's why we need a 2PC consensus
protocol.

O/R
mapping

Rep.

CiCs
Procedural
mapping

B

locking

consensus

13

Example: JDO Object Types

Object or
Resource

StatefulStateless

transient

Non-
transactional

persistent

TransactionalNon-
transactional

Transactional

O/R mappers support transactional and non-transactional versions of stateful
objects

14

JDO Architecture

JDO’s are designed to work in a non-managed form (no application
server) and a fully managed form. They are supposed to shield
applications from different data sources and mapping problems

15

State Diagram of JDO lifecycle

MakePersistent

Rollback

MakeNonTA

commit

commit rollback

commit

getValue

commit

setValue

rollback

deletePersistent

setValue setValue

makeNonTA

Commit/rollb.

MakeTAsetValue

MakeTA Commit/Rollb.

DeletePersistent deletePersistent

16

BTW: Data Store Session Pooling

Rep.
row

Table Y

Dist. service

The number of channels to a data store is limited and if an object
would directly allocate a session (channel) and not return it
quickly, system throughput would become marginal. Also, session
creation is expensive (security!). Now either clients ask a pool for a
session or the container framework automatically allocates and
returns sessions. Problems: timeouts, connection recycling,

Session (connection)
Contract

Rep.

Rep.
row

Table Z

DB session
pool

17

Transactions

(From Peter Bailis, When ist “ACID” ACID? Rarely!
http://www.bailis.org/blog/when-is-acid-acid-rarely/

Architecture of a Database System:
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf

1. ACID

2. Transaction Models

3. Isolation Levels

4. Two-Phase-Locking: Isolation

5. Two-Phase Commit: Consensus

http://www.bailis.org/blog/when-is-acid-acid-rarely/

18

Classic ACID Definitions

1. Did your PC crash and you lost the changes you made to a word file? The changes

were not DURABLE

2. Did you move your birthday party to a new location on short notice but couldn’t
catch all participants in time so some showed up at the old location and some at the
new? Your re-schedule call wasn’t ATOMIC

3. Did you and a friend work on a shared file on a server and ended up with some of
your changes and some of her changes in the file? Your application did not provide
ISOLATION between yourself and your friend.

4. Your friend wants to take a day off and asks you to do some of her work on that
day (check out a piece of software, modify it, test it, document it and check it in
again). You do it (maybe with some more iterations (;-) and next day she starts a
new task. You have observed CONSISTENCY of the tasks.

19

Transaction Properties and Mechanisms

Atomic changes over
distributed
resources

Consistency

Isolation from
concurrent access

Durability of changes

Consensus/Voting algorithm:
two phase commit

Observation of consistency
constraints between objects
(or “start consistent, end
consistent)

Locking mechanisms: 2 phase
locking, hierarchical
locking

Transfer of changes to memory
objects to persistent storage

20

Serializability and Isolation

 The textbook definition of ACID Isolation is serializability (e.g.,
Architecture of a Database System, Section 6.2), which states that

the outcome of executing a set of transactions should be equivalent to
some serial execution of those transactions.

This means that each transaction gets to operate on the database as if it were
running by itself, which ensures database correctness, or consistency. A
database with serializability (“I” in ACID), provides arbitrary read/write
transactions and guarantees consistency (“C” in ACID), or correctness, of
the database. Without serializability, ACID, particularly consistency, is
generally1 not guaranteed

(From Peter Bailis, When ist “ACID” ACID? Rarely!
http://www.bailis.org/blog/when-is-acid-acid-rarely/

Architecture of a Database System:
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf

http://en.wikipedia.org/wiki/Serializability
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://research.microsoft.com/en-us/people/philbe/chapter1.pdf
http://www.bailis.org/blog/when-is-acid-acid-rarely/#arbitrary-note
http://www.bailis.org/blog/when-is-acid-acid-rarely/

21

Locking

22

Protect distributed objects : lost updates

Class counter {

Int count = 0;

Increment() {

Int temp = count;

Temp++;

Count= temp;}

Client A

Client B

Client A calls increment(). Count
is 0, temp becomes 0.

Client A’s thread has used it’s
slice and is preempted.

Client B calls increment(). Count
is 0, temp becomes 0.

Client B adds 1 to temp and
writes it back to count. Count is 1.

Now comes Client A again. Also
adds 1 to temp and writes it back
to count. Count is 1 and NOT 2
now. We’ve lost one update.

The lost update problem!
Would it help to use count++ ?

23

Protect distributed objects : inconsistent
analysis

Class counter {

Int count1 = 1;

Int count2 = 0;

Swap() {

Int temp = count1;

Count1=count2;

Count2=temp;}

Int sum() {

Return count1 + count2; }

}

Client A

Client B

Client A calls swap(). After
storing count1 in temp it is set to
count2 (0).

Client A’s thread has used it’s
slice and is preempted.

Client B calls sum(). Count1 is
now 0, and count2 is still 0.

Client B comes back from sum()
with result 0.

Now comes Client A again.
Writes temp back to count2 .
Count2 is now 1 but sum() has
reported 0 for both. The analysis
of sum() is wrong.

The inconsistent analysis problem!

24

Use of locking against concurrent access

• Binary locks: e.g. synchronize(object). Will block all
clients except of one.

• Modal locks (read lock, write lock): Clients who only want
to read can get read locks – many concurrent read locks are
possible.

Binary locks are very simple to use but performance suffers
badly because they cannot distinguish between reads and
writes.

25

Lock compatibility matrix

OK NO

NO NO

Read lock

Read lock

Write lock

Write lock

The concurrency service will not allow concurrent locks other than
read locks. A write lock will exclude all other locks.

26

Time-Based Leases: Redlock-Algorithm

The redlock algorithm from Redis uses time-based leases for
liveness reasons. From: M.Kleppmann, Designing Data-intensive
Applications.
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-l
ocking.html
 (Think asynchonous/partial synchronous systems)

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

27

Time-Based Leases: Redlock-Algorithm

Without “fencing” (e.g. sequence number), storage cannot detect
expired leases.
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-l
ocking.html

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

28

Lock granularity

database
Lock whole DB

Lock table

Lock row

Besides lock mode the granularity of locks will determine
overall throughput. The smaller the better.

29

Optimistic Locking

data Timestamp=1122

database
Lock row, read it (with
timestamp), release lock

Overall throughput is better because locks are held only a very
short time. The timestamp compare logic should be a
framework mechanism of the client session objects.

Use row
data copy

Write to DB. For all data read
acquire locks and compare the
timestamps. If one is newer, abort
store operation

Client session

30

Serializability with Two-phase locking

client
resource

resource

resource

resource

1. Allocate all
locks

client

client

2. Manipulate data

3. release all locks

A basic requirement for the 2-phase locking protocol is that all
locks are allocated first. After the first lock is released NO
other locks may be acquired! This will guarantee serializability

31

Deadlocks

Client A
Resource A

Resource B

Allocate lock for A

Client A

Deadlocks can be detected (e.g. by a database). To prevent
deadlocks, always allocate resource locks IN THE SAME
ORDER. Process termination must release all locks held by a
process.

Client B

Client B

Allocate lock for B

Try to allocate lock
for B: not granted,
held by client B

Try to allocate lock
for A: not granted,
held by client A

32

Distributed Deadlocks

Node1 Node3

Node2

A

B

C

T3

T1

T2 Wait for C

Held by T1

Held by T3

Held by T2

Wait for B

Wait for A

A distributed deadlock does not show locally. How can it be detected?

33

Exercise:Distributed Deadlocks
Detection

Some hints: local wait-for-graph, detection server, distributed edge chasing
algorithms, stochastic. (from Coulouris et.al. Page 535).

Find ways to detect a DD and discuss
a) correctness
b) liveness
c) cost/complexity
d) failure model
e) architecture type

Of your solution.

34

Distributed Transactions

35

Transaction API

Client:

System is in consistent state

Begin Transaction

Modify objects

Commit Transaction

System has new, consistent state,
all local objects now invalid. The
changes are VISIBLE to others.

On Error, either
the system or the
client can do a
“rollback” which
takes system
state back to the
beginning of the
TA

Only in case of a successful commit operation becomes the new state durable
and visible to others. Please note that “rollback” really means going back to the
beginning COMPLETELY. Theoretically the client does not even KNOW that
she tried an operation and even log files would have to be cleaned!

36

Components of distributed transactions

Transactional
Client

Transaction
(current)

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)

Transactional
Servers
(objects)

Begin(),
commit()
Rollback() Read/write

Read/write/prepare
commit ,rollback

Vote, commit,
rollback

register

Every resource that implements the XA interface can participate in
distributed transactions.

37

Service Context

Some services need so-called context information to flow with a
call. Two prominent ones are:

Security (needs to “flow” user information, access rights etc.)

Transactions (need to flow information about on-going
transactions to participants)

This additional information needs to be standardized if different
vendor implementations of services should interoperate.

Do you know other “context related” design problems?

38

Distributed Two-Phase Commit: Vote

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)prepare

Vote

Voteprepare

The only way to achieve “atomic” operations in a distributed setting is to ask all
the participants. After a client called “commit()” the TA-Coordinator asks all
objects which are part of the TA to vote on either a commit or a rollback. The
objects in turn ask the resource managers (e.g. DBs) to “prepare” for a commit.
After successful return of a prepare the object AND the resource manager have
promised to commit the changes if the coordinator sends a commit.

39

Distributed Two-Phase Commit: Completion

Transactional
Servers
(objects)

TACoordinator

XA Resource
Manager

XA Resource
Manager

Transactional
Servers
(objects)Commit/

rollback

Commit/Rollback

Commit/RollbackCommit/

rollback

ONLY the coordinator can either commit or abort a TA after the prepare phase. It
will call for a commit if the vote phase was successful and all participants have
prepared for a following commit. If an error occurred (e.g. a participant was
unreachable) the coordinator will call for a rollback.

40

Example of distributed transactions

XAResource1 XAResMgr1 XAResource2 XAResMgr2 CoordinatorcurrentTA

begin

Withdraw money Register resource with coordinator

Read/write data

place money Register resource with coordinator

Read/write data
commit

vote

vote

Read/write data and prepare

Read/write data and prepare

Do commit

Do commit

Tell resource manager to commit

Tell resource manager to commit

2pc phase 1

2pc phase 2

Work phase

41

Failure models in distributed TA’s

Work phase:

- A participant crashes or is unavailable in work phase.

 The coordinator will call for a rollback.

- The client crashes in work phase (commit is not called).
Coordinator will finally time-out the TA and call rollback.

Voting Phase:

- If a resource becomes unavailable or has other problems, the
coordinator will call rollback

Commit Phase: (server uncertainty)

- a crashed server will consult the coordinator after re-start and ask
for the decision (commit or rollback)

42

Special problems of distributed TA’s

• Resources: Participants in distributed TA’s use up many
system resources due to logging all actions to temporary
persistent storage. Also considerable parts of a system may
get locked during a TA.

• Coordinator – a single point of failure? Even the
coordinator must prepare for a crash and log all actions to
temporary persistent storage.

• Heuristic outcomes for transactions. Under certain
circumstances the outcome of a transaction may only
follow a certain heuristic because the real outcome could
not be determined. (see exercises)

43

Transaction Types: flat TA’s

begin Commit

Read/ write

Rollback

Flat TA’s show the all-or-nothing characteristics of transactions
best. ANY failure will cause a complete rollback to the original
state. If many objects have been handled this can lose quite a lot of
work.

44

Transaction Types: nested TA’s

Parent TA begin Commit

Read/ write

Rollback

Nested transactions allow partial rollbacks with a parent transaction. A child TA
rollback does not affect the parent TA. But a parent TA rollback will return ALL
participants to their initial state. Example: allocation of a travel plan: hotel, flight,
rental-car, trips etc. The whole TA should not be aborted only because a certain
rental car is not available.

Child TA begin

Child TA commit.
Child object now
VISIBLE to parent

Child TA rollback

45

Transaction Types: long-running TA’s

 begin Commit

Read/ write

Rollback

A problem of long-running transactions is resource allocation as well as the
increasing amount of work that would be lost in case of a rollback. Syncpoints
move the fallback position forward towards the commit point.

A rollback will
only go back to the
checkpoint state

 syncpoint

Read/ write

46

Transaction Types: Compensating TA’s

 begin Commit

Read/ write

Transaction throughput increases if objects become visible sooner –e.g. through a
lose interpretation of the ISOLATION property. Now we need to
COMPENSATE for the previous TA (which can no longer be rolled back). It
depends on the application whether such compensating transactions are possible.
Compensating transactions are also hand-coded if no transaction
monitor/manager is available.

This is like a
“logical” rollback

 commit begin

 undo side-
effects of
previous TA

System detects
that commit was
too early

47

The interplay of transactions and persistence

begin()

findObject(Key)

DB

Data storeTransactional
Service

factory
Lock table. Lock
row(Key). Read Row-
data

Create object. Load it
with data from row

objread();write(); Store changes
temporarily

objCommit() Make changes
permanent (commit)

Unlock resources

begin()

read();write();

Lock row. Load Obj.
with data from row

obj

Store changes
temporarily

The quality of the locks held during a TA is defined through “Isolation levels” in
the Resource Manager. Please note that at the beginning of a new TA existing
objects are RE-LOADED!

48

Transaction Isolation Levels: ANSI

The ANSI/ISO SQL standard defines four levels of transaction isolation in terms
of three phenomena that must be prevented between concurrent transactions.

dirty reads: A transaction reads data written by concurrent uncommitted
transaction.

non-repeatable reads: A transaction re-reads data it has previously read and finds
that data has been modified by another transaction (that committed since the initial
read).

phantom read : A transaction re-executes a query returning a set of rows that
satisfy a search condition and finds that the set of rows satisfying the condition has
changed due to another recently-committed transaction.

(From the Postgres manual), see also IBM Knowledge center
“Isolation Levels”

49

Isolation Levels Explained

Also see his excellent “jepsen” blog, where he analyzes distributed systems correctness
in popular products (https://aphyr.com/tags/Jepsen). A generalized model – independent
of implementation – is given in Adya, Liskov, O'Neil, Generalized Isolation Level
Defintions, (2000) http://bnrg.cs.berkeley.edu/~adj/cs262/papers/icde00.pdf

Dirty Write (P0): w1(x) … w2(x) Prohibited by RU, RC, RR, 1SR
Dirty Read (P1): w1(x) … r2(x) Prohibited by RC, RR, 1SR
Fuzzy Read (P2): r1(x) … w2(x) Prohibited by RR, 1SR
Phantom (P3): r1(P) … w2(y in P) Prohibited by 1SR

“If you’re having trouble figuring out what these isolation levels actually allow, you’re not alone. The anomalies
prevented (and allowed!) by Read Uncommitted, Read Committed, etc are derived from specific implementation
strategies. If you use locks for concurrency control, and lock records which are written until the transaction commits (a
“long” lock), you prevent P0. If you add a short lock on reads (just for the duration of the read, not until commit time),
you prevent P1. If you acquire long locks on both writes and reads you prevent P2, and locking predicates prevents P3.
The standard doesn’t really guarantee understandable behavior–it just codifies the behavior given by existing, lock-
oriented databases.” From: https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster (Kyle Kingsbury)

There’s a neat kind of symmetry here: P1 and P2 are duals of each other, preventing a read from seeing an
uncommitted write, and preventing a write from clobbering an uncommitted read, respectively. P0 prevents two writes
from stepping on each other, and we could imagine its dual r1(x) … r2(x)–but since reads don’t change the value of x
they commute, and we don’t need to prevent them from interleaving. Finally, preventing P3 ensures the stability of a
predicate P, like a where clause–if you read all people named “Maoonga”, no other transaction can sneak in and add
someone with the same name until your transaction is done.

https://aphyr.com/tags/Jepsen

50

Transactions and Isolation Levels: Snapshot
Isolation and MVCC

Snapshot Isolation works by guaranteeing a consistent snapshot on all reads when
a transaction starts (basically by retrieving the last committed version). Updates
will then only be committed, if there is no conflict with concurrent updates.

In effect, multiple concurrent versions exist. Snapshot Isolation does not exhibit
inconsistencies described by ANSI, but it is NOT serializable.

Possible effects are write skew anomalies. MVCC based Tas allow a much higher
concurrency rate, mostly due to the fact, that read locks are not held and there is no
re-verification of values read during the TA.

See wikipedia and M.Herlihy for MVCC,
https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-
cluster (Kyle Kingsbury) for Snapshot Isolation (Oracle)

51

Write Skew Anomalies

TA 1's update on Account 1 depends on information from
Account 2. Account 2 changes during TA 1. Both transactions
commit on stale read values but the updates do not conflict.

Solution: forced serializability e.g. with “Select for update”
command. Does this work for distributed TA's???

Account 1 Account 2

TA 1 TA 2

Read A2
Read A1

Update A1 Update A2

52

Transaction Isolation Levels: Implementations

Again from: https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster.
“SNAPSHOT ISOLATION lies between Read Committed and Serializable, but is neither
a superset nor subset of Repeatable Read.”

https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster

53

Transaction Isolation Levels: Phenomena

Isolation
Level/Effects

Dirty Read
(cells read change
during TA. Locked
cells can be read)

Non-Repeatable Read
(rows change during TA,
changed or locked rows
can be read)

Phantom Read Write skew anomalies

Read uncommitted possible possible possbile possible

Read commited NO possible possible NO/Yes, depending on
implementation

Repeatable read
Read stability

NO/NO NO/NO NO/possible NO (no access to
locked cells)

Serializable NO NO NO NO (linearized)

Snapshot Isolation NO NO NO possible

Cursor Stability Like read committed

Consistent Read Like snapshot isolation?

Serializable Snapshot
Isolation

NO NO NO NO (forced write
collisions)

Make sure that your resource managers and the transaction controller all work with the
same level of isolation and that it is appropriate for your application. Higher levels mean
lower performance. Do not try to change levels within transactions! Compare vendor
isolation labels with the description of their effects...

54

Transaction Isolation Levels: Defaults

From Peter Bailis, When is “ACID” ACID? Rarely! Note: Oracle and SAP do not provide
serializability at all – even if they use the term!

55

The Base: File System Consistency

56

File Systems Block Order Guarantees

BOB, the Block Order
Breaker, is used to find
out what behaviours are
exhibited by a number of
modern file systems that
are relevant to building
crash consistent
applications.

from:
http://blog.acolyer.org/2
016/02/11/fs-not-equal/

57

Crash-Consistent Applications

All File Systems are Not Created Equal: On the Complexity of
Crafting Crash Consistent Applications – Pillai et al. 2014
Discussion: http://blog.acolyer.org/2016/02/11/fs-not-equal/

ALICE, the
Application Level
Intelligent Crash
Explorer explore the
crash recovery on
top of file systems.

58

Eventually Consistent Storage Systems

59

Consistency without Coordination

“The rise of Internet-scale geo-replicated services has led to
upheaval in the design of modern data management systems.
Given the availability, latency, and throughput penalties associated
with classic mechanisms such as serializable transactions, a broad
class of systems (e.g., “NoSQL”) has sought weaker alternatives
that reduce the use of expensive coordination during system
operation, often at the cost of application integrity. When can we
safely forego the cost of this expensive coordination, and when
must we pay the price?”

From: Coordination Avoidance in Distributed Databases by
Peter David Bailis, Doctor of Philosophy in Computer Science
University of California, Berkeley
http://www.bailis.org/papers/bailis-thesis.pdf

60

Forces behind NoSQL
- Web2.0 brings user generated content: much more writes!

- Social Networks create huge datasets with structures difficult for relational Dbs
(graph processing, sparse data)

- Fast growing sites need a storage layer that scales horizontally

- Fast growing sites want schema-less storage

- Data frequently unstructured – need map/reduce for scan

- Data processing mostly sequential

- Queries against RDBMs anyway too expensive and not possible with shards

- Joins and queries scale against RAM based caches/DBs

- Application servers scale better horizontally than RDBMs

- Scaling storage needs to be automatic

- User data allow less than ACID processing sometimes

- ACID does not work across shards very well

RDBMs did too much in some cases and too little in others
(M.Stonebreaker).

61

62

The fundamental scaling Problems of
RDBMs

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales
where relational databases don't.
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/

The poor time complexity characteristics of SQL joins; O(m+n) or worse

The difficulty in horizontally scaling; Loss of joins or jumping between nodes

The unbounded nature of queries; A query can kill a DB und load

Optimized for storage efficiency (no duplicates), integrity and flexibility of
access through arbitrary joins.

SELECT user_id, sum(amount) AS
total_amount
FROM orders
GROUP BY user_id
ORDER BY total_amount DESC
LIMIT 5

63

NoSQL Storage Systems

NoSQL Design Patterns

Stores with probabilistic guarantees:

AP-Stores: Dynamo, Cassandra, CouchDB, MongoDB, Riak
etc.

Stores with strong guarantees:

CALM (bloom lang),

CRDTs: Convergent/Consistent Replicated Data Types

64

NoSQL Design Patterns

- Partition keys with many
distinct values

- All data in one table with
hierarchical modeling and
de-normalization

- Values evenly requested

- Use composite secondary
keys for 1:n, n:n, queries

- limited query responses
(with paging token)

- understand the use case

- know you access patterns
before data layout

- Avoid relational modeling

- data integrity is an
application concern

- data storage efficiency is
no concern

Great overview from R. Houlihan at re:event 2018:
https://www.portal.reinvent.awsevents.com/connect/sessionDetail.
ww?SESSION_ID=22972

https://www.portal.reinvent.awsevents.com/connect/sessionDetail.ww?SESSION_ID=22972
https://www.portal.reinvent.awsevents.com/connect/sessionDetail.ww?SESSION_ID=22972

65

AntiPattern1: hot keys

From Houlihan. A key with a small range of values prevents
horizontal scaling

66

AntiPattern2: Relational OLTP

From Houlihan. Relational OLTP is flexible (analytical) but does
not scale horizontally

67

AntiPattern3: Overwriting data

From Houlihan. Keep versions and update only current version.
This can easily be done atomically.

68

AntiPattern 4: Pagination

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales where
relational databases don't.
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/

Do not ask for ALL your data!

69

Dynamo: Always Writeable AP Key/Value Store

Must see: on Dynamo Design Patterns: Rick Houlihan
https://www.youtube.com/watch?time_continue=9&v=HaEPXoXVf2k

https://www.youtube.com/watch?time_continue=9&v=HaEPXoXVf2k

70

Dynamo Application Area: Shopping Cart Example

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store.
The Dynamo design principles need to be known by clients. Not every use-case can be
mapped to an eventually consistent store.

Storage Cluster

Failed shopping cart

Client

New version

 conflict

timestamp_j

timestamp_k

71

Automatic - Reconciliation Approach

“last write wins” strategy. After:G. DeCandia et.al. Dynamo can automatically try to
reconcile different versions across replicas.

New version

 Older
version

timestamp_k

timestamp_j

72

Client/Business – Reconciliation Approach

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store.
The client gets all available versions to choose or merge. This is a business-driven strategy.
For an idea on the complexity behind such “compensation” schemes, see: P.Bailis,
A.Ghodsi, Eventual Consistency Today: Limitations, Extensions, and Beyond. How can
applications be built on eventually consistent infrastructure given no guarantee of safety?
In 11/3 acmqueue

Storage Cluster

Failed shopping cart

Client

New version

 conflict

timestamp_k

timestamp_j

Merge both
versions!

73

Dynamo Design Principles

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store.
Support for heterogeneous hardware requires the concept of “virtual” nodes. Key spaces
are assigned to virtual nodes.

- No master (decentralized)
- heterogeneous hardware
- symmetric peers
- incrementally scalable
- eventually consistent
- trusted environment needed
- replication support (conf.)
- “always write” enabled (conflict
 resolution during read)
- multi-version store with conflict
 resolution policies

Client
W

rit
e

Read

74

Horizontal Scaling

A.Debrie, SQL, NoSQL, and Scale: How DynamoDB scales where
relational databases don't.
https://www.alexdebrie.com/posts/dynamodb-no-bad-queries/

75

Dynamo-Technology

After:G. DeCandia et.al. Dynamo allows clients to define the number of replicas (n).

76

Dynamo Software Architecture

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store.
For writes, a coordinator node is picked from the preference list for this key space. Usually
the fastest node that answered the last read request is chosen. This makes “read-your-writes
consistency more likely and causes fewer SLA violations.

Request Coordination

Membership/Failure

Local Persistence Eng.

Storage Engine
Plug-In

Collect versions from
other nodes,
reconciliate if
requested. Generate
Vector Clock for
combined version.
Perform read-repair
on outdated nodes.

Java
NIO
Event
Proc.

State
Mach.

State
Mach.State

Mach.

77

Dynamo-DHT: Placement vs. Partitioning

After:G. DeCandia et.al. Dynamo uses an enhanced consistent hashing algorithm to
balance load between nodes and to minimize changes when nodes join or leave the ring.
Equally sized key spaces allow efficient copying of spaces across machines. A gossip
protocol distributes key space and node information across the ring. (An alternative would
be to use a DHT approach directly to locate a machine that “knows” where to find the
required information)

Key spaces of equal size

Positions in the ring, assigned to virtual hosts

Virtual nodes resp. for
key space and replicas

78

DHT: Membership-Change (Join)

After:Ricky Ho, NOSQL Patterns.

79

DHT: Membership-Change (Leave)

After:Ricky Ho, NOSQL Patterns. Interestingly, the leaving of a real node – probably due
to a crash – should not be considered a permanent thing, causing re-balancing of the ring.
Most likely, the node will be replaced shortly. Dynamo uses an explicit error handling
protocol to add and remove nodes to avoid unnecessary overhead.

80

Dynamo “Sloppy Quorums”

 After:G. DeCandia et.al. “All read and write operations are performed on the first N
healthy nodes from the preference list, which may not always be the first N nodes
encountered while walking the consistent hashing ring.” Node E will temporarily store
replicas for D and later transfer those back to D.

Temp.
Replica for
D's keys

Transfer

81

Dynamo Versioning and Reconciliation

 After:G. DeCandia et.al. A client reading D will get D3 and D4 versions and needs to
reconcile them into a new version (D5). Dynamo will then distribute D5 as the new version
and discard older D's.

D2 is descendant of D1

D3 and D4 are
causally unrelated
versions (conflict)

82

Read Processing with VC

 After:Ricky Ho, NOSQL Patterns. A replica keeps a counter for every key and also the
version state from other replicas (conflicts)

83

Update Processing with VC

 After:Ricky Ho, NOSQL Patterns. An update reconciles different versions into a new one
– or gets thrown away, if it is based on an outdated vector clock.

84

High-Performance Read Engine

After:Giuseppe DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store. In
case of much more reads than writes, it is OK that writes are slow.

N-Storage Cluster

Client

W == N

R == 1

85

Background Anti-Entropy

After: Bharatendra Boddu, Using Merkle trees to detect inconsistencies in data
(http://distributeddatastore.blogspot.de/2013/07/cassandra-using-merkle-trees-to-
detect.html). Two replicas exchange Merkle hash-trees instead of whole volumes (gossip
protocol). Hash-trees allow fast detection of changes in branches by only comparing
hashes. In case of differences, replicas perform bulk-updates. Note that anti-entropy needs
to work asynchronously in the background!

86

Dynamo Configuration

R: Number of replicas for a read operation
W: Number of replicas for an update operation
N: Number of replicas wanted

After Werner Vogels, http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

87

AP-Column-Store: Cassandra

88

BigTable Cluster Architecture

After: Ricky Ho, BigTable Model with Cassandra and Hbase. This Architecture can be realized e.g. with a DHT storage layer.
Also search engines use the option to scale both data size and request numbers independently.

89

BigTable Column Store Concept

After: Ricky Ho, BigTable Model with Cassandra and Hbase. Columns allow sequential processing at high speed. They can
easily deal with empty fields (a user could have 0 or millions of followers).

90

BigTable Column Families Concept

After: Ricky Ho, BigTable Model with Cassandra and Hbase. RowIds for different column families can have different types.
Applications use this to build an index. In the above case, the user names could be a rowId for a ColumnFamily that has u[1-n]
 as a key and an empty value.

91

BigTable Column-Oriented Store

After: Ricky Ho, BigTable Model with Cassandra and Hbase. A key concept for processing large numbers of writes is to use
sequential, append only writes. On disk, data is stored using Sorted String Tables (SSTable). These tables are never
overwritten and algorithms can rely on that! Periodically they are collected and recombined into a new table using a simple
sorted merge. The commit log serves as a backup, if there is a problem with in-memory tables. The concept comes originally
from Google BigTable.

92

Log Structured Merge Trees (LSM)

After:Dmitri Babaev, Cassandra vs. Hbase. The diagram shows memory and disk parts as well as the WAL (write ahead log)
to secure persistence and consistence in case of a crash. http://de.slideshare.net/DmitriBabaev1/cassnadra-vs-hbase

See also: Chris Lohfink, LSM Trees – A high level overview of read/write paths (with examples of updates)

Sorted strings

93

Log Structured Merge Trees (LSM)

After: O'Neil, Cheng, Gawlick, O'Neil, The Log-Structured Merge-Tree (LSM-Tree). When a key space in memory becomes
too big, it gets merged with on-disk content. Nothing is overwritten. Lit: Pat Helland, Immutability changes everything! (an
overview of techniques based on immutable data) http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf C0 and C1
parts are merged with a “rolling merge” technique (like merge sort).

http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

94

LSM vs. Btree

After: https://tikv.github.io/deep-dive-tikv/key-value-engine/B-Tree-vs-Log-Structured-Merge-Tree.html

Write amplification: db-
writes/storage writes
Read amplification: disk
reads/query
Storage amplification:
db-size/storage size

https://tikv.github.io/deep-dive-tikv/key-value-engine/B-Tree-vs-Log-Structured-Merge-Tree.html

95

Bloom-Filter to save Disk-Access

After: Ricky Ho, BigTable Model with Cassandra and Hbase. The bloom filter checks, whether a key is in a SSTable. This is
pretty fast and the lookup algorithm knows, that SSTables do not change later! Only if the bloom filter comes back with a
negative, an expensive SSTable seek is performed. Bloom filters allow false positives though and you cannot remove an element
later (which is anyway no issue here). See: http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html by
Jonathan Ellis. The filter works like this: A key is run through k different hash functions and the results are marked in a
memory array. The hashes from the 3 elements X,Y,Z have been inserted into the array. A fourth one, W, is not contained in
the array because one hash position is not marked (0). There are no false negatives – which is quite obvious, because inserting
means marking the array!

Diag: D.Eppstein, wikipedia

http://spyced.blogspot.com/2009/01/all-you-ever-wanted-to-know-about.html

96

Another Example of Write-Once Logic

After: Ricky Ho,NOSQL patterns. This is an example form the CouchDB architecture. Just one atomic test-and-swap
mechanism can consistently update a store. Write-once data structures are also easy to cache and algorithms do not need to re-
read data. Also: Pat Helland, Immutability Changes Everything CDIR15,

97

CouchDB Storage Structure

After: Ricky Ho,NOSQL patterns. This is an example form the CouchDB architecture. Log-file management is very similar to
BigTable approaches.

98

99

Customizations and Guarantees

After: Ricky Ho, BigTable Model with Cassandra and Hbase. These trade-offs are quite typical for eventually consistent
stores. Surprisingly many applications can live successfully with those restrictions.

- R/W/N selection decides about consistency levels
- Only atomic update of a row.
- No multi-row transactions
- Indexes for reverse lookup by applications
- Danger of overwriting intermediate changes (lost
update)
- Failed updates (write-quorum not reached) leave
some replicas updated. Through anti-entropy
copying, those can distributed through the store.
Clients need to repeat failed updates and deal with
duplicates.

100

Cassandra on AWS

After: Jorge Rodriguez, Global Cassandra on AWS EC2 at BloomReach. The problem shown is the combination of an elastic
resource (EMR) with a fixed cluster. BloomReach finally used a request throttling strategy to ease cluster load. They describe
more optimizations in their paper, e.g. elastic cassandra.

101

NewSQL: The Comeback of SQL?
- SQL Overlays for query processing

- Unified DB storage types (key/value, doc, columns, tables)

- Support for advanced isolation and consistency models

- Example: CockroachDB two excellent papers:
https://www.cockroachlabs.com/blog/consistency-model/

https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd
/

The first paper tries to give a unified view on serializable and
linearizablle features in NoSQL/NewSQL Dbs. The second
tells the difference between higher level DB and storage
engines.

Dealing with eventual consistency and maintaining several
different NoSQL databases within one application becomes very
cumbersome...

https://www.cockroachlabs.com/blog/consistency-model/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/
https://www.cockroachlabs.com/blog/cockroachdb-on-rocksd/

102

Beyond Relaxed Consistency...

103

Beyond Relaxed Consistency...

If distributed consensus is too expensive, and relaxing consistency
not good enough, a look at algorithms and data structures which
are insensitive to ordering might pay off. Lit: M.Shapiro: A
comprehensive study of CRDTs

- Order insensitive (CALM) processing. EC programs
that follow monotonic logic principles

- State-based CRDTs (Converging replicated Data Types)
- Operation-based CRDTs

104

The CALM Principle

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R.
Marczak, Consistency Analysis in Bloom: a CALM and Collected
Approach. Monotonic program parts are safe under eventual
consistency (P.Bailis)

“the tight relationship between Consistency And Logical
Monotonicity. Monotonic programs guarantee eventual
consistency under any interleaving of delivery and
computation. By contrast, non-monotonicity—the
property that adding an element to an input set may
revoke a previously valid element of an output set—
requires coordination schemes that “wait”
until inputs can be guaranteed to be complete.”

105

CALM Operations

Logically monotonic:

- initializing variables,
- accumulating set members,
- testing a threshold condition

non-monotonic:

- overwriting variables,
- set deletion,
- resetting counter
- negation

P.Bailis, A.Ghodsi, Eventual Consistency Today: Limitations, Extensions, and Beyond

106

Order of
execution/argu
ments does not

matter!

Service is either a
natural or our

protool needs to
achieve it!

No synchronization
Needed!

CALM Design Patterns

107

State-based CRDTs

State-based CRDTs calculate the new result at one node and then propagate the result to
replicas. The data structure needs to be commutative, associative and idempotent. This is
e.g. true for sets.
See: Arnout Engelen, CRDTs illustrated, Strangeloop 2015

Value a:4

client

P
lu

s:
 a

,6
Value a:4

a=10

108

Operation-based CRDTs

Operation-based CRDTs send the requested operation to each replica and the results are
calculated locally. The operations need to be commutative with “exactly once” semantics
(idempotent) and in fifo order. Those delivery guarantees are rather hard to guarantee and
therefore state-based CRDTs are currently more popular.
See: Arnout Engelen, CRDTs illustrated, Strangeloop 2015

Value a:4
→ 10

client

P
lu

s
a,

6
Value a:4
→ 10Plus a,6

109

“Bending the Problem”

”A key property of these advances is that they separate data store and application-level
consistency concerns. While the underlying store may return inconsistent data at the level
of reads and writes, CALM, ACID 2.0 and CRDT appeal to higher-level consistency
criteria, typically in the form of application-level invariants that the application maintains.

Instead of requiring that every read and write to and from the data store is strongly
consistent, the application simply has to ensure a semantic guarantee (such as "the counter
is strictly increasing")—granting considerable leeway in how reads and writes are
processed.”

(P.Bailis et.al.)

110

“Bending the Problem”: Counting Track-Views

Peter Bouton, Soundcloud, Consistency without consensus in
production systems, Strangeloop 2015. Symmetric difference
allows to find missing elements. Fixing is idempotent.

 Tracks:
{} {123 }
{}

 Tracks:
{} {123, 456
} {}

 Tracks:
{} {123, 456
 } {}

Uid 123 listening track X

Uid 456 listening track X

?

{124,456}Δ{123}Δ{124,456} =
{456}

111

Examples of CRDTs
Counters:
Grow-only counter (merge = max(values); payload = single integer)

Positive-negative counter (consists of two grow counters, one for increments and another for decrements)

Registers:
Last Write Wins -register (timestamps or version numbers;

merge = max(ts); payload = blob)

Multi-valued -register (vector clocks; merge = take both)

Sets:
Grow-only set (merge = union(items); payload = set; no removal)

Two-phase set (consists of two sets, one for adding, and another for removing; elements can be added
once and removed once)

Unique set (an optimized version of the two-phase set)

Last write wins set (merge = max(ts); payload = set)

Positive-negative set (consists of one PN-counter per set item)

Observed-remove set

From: “Distributed Systems for fun and profit”

112

Distributed Configuration and
Orchestration

When the power in a warehouse computing
center is turned on....

113

“An Oracle is needed”...

- Configuration changes and notifications

- Update of failed machines

- Dynamically integrate new machines/deconfiguration

- Elastic configuration with partial failures

- API for watches, callbacks, automatic file removal, triggers

- Simple data model (directory tree model)

- High performance, highly available in-memory cluster solution

- No locks for updates but total ordering of requests for all cluster replicas

- All replicas answer reads

- wait-free implementation of coordination service with client API performing
locks, leader-selection etc.

Benjamin Reed, Zookeeper, the making of.

114

Becomes Distributed Coordination...

wait-free implementation (request ordering) of coordination service with client
API implementing locks queues, barriers, leader-selection, group membership
etc. From: Benjamin Reed, Zookeeper, the making of.

Client

Coordination
Libraries
 (“Recipes)

Leader

Zookeeper
cluster

115

Zookeeper

TA-log, snapshot,

Writes, updates
Snapshots,
Transaction log

In-memory
Repl. data

Strictly ordered (stamped)
updates to backup servers

Mostly read clients

reads
writes

disk

Triggers,
heartbeat
Triggers,
heartbeat

116

Directory-like Namespace

znodes

Znodes are like files which can be directories as well.
They can be updated atomically. Znodes are versioned
and changes can be “watched” by clients.

117

Use Case 1: Service Monitoring

znodes

Updates are atomic. Events delivered by server order.
The coordination service keeps state in a replicated DB.

services

www

monitored

AP1: …. , up
AP2:........, downMonitoring

service

Watch

Update events
APn

APn
APn

updates

118

Use Case 1: Self-Organized Boot

znodes

Additional protocols allow leader election, service location etc.
Locking must be supported too. Configuration files do not work
in a cluster environment

services

www

database

DB2: Primary
DB1: Secondary

writeDB1

DB2

updates

client

119

follower

Leader
election

Leader
election

2
follower

120

Liveness and Correctness

• Sequential Consistency - Updates from a client will be applied in the
order that they were sent.

• Atomicity - Updates either succeed or fail. No partial results.

• Single System Image - A client will see the same view of the service
regardless of the server that it connects to.

• Reliability - Once an update has been applied, it will persist from that
time forward until a client overwrites the update.

• Timeliness - The clients view of the system is guaranteed to be up-to-date
within a certain time bound.

121

Zookeeper API

create: creates a node at a location in the tree

delete: deletes a node

exists: tests if a node exists at a location

get data: reads the data from a node

set data: writes data to a node

get children: retrieves a list of children of a node

sync: waits for data to be propagated

122

Primary-Order Atomic Broadcast with Zab

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini, Zab: High-performance broadcast for
primary-backup systems

● A primary sends non-commutative, incremental state changes
to backup units

● The order of incremental changes is kept even in case of a
primary crash

● Multiple outstanding requests are possible
● An identification scheme prevents re-ordering of updates
● A synchronization phase prevents new updates from being

stored before old updates are delivered.

123

Consistency Requirements for ABCast

Validity: If a correct process broadcasts a message, then all correct
processes
will eventually deliver it.

Uniform Agreement: If a process delivers a message, then all
correct processes
eventually deliver that message.

Uniform Integrity: For any message m, every process delivers m at
most once,
and only if m was previously broadcast by the sender of m.

Uniform Total Order: If processes p and q both deliver messages m
and m0,
then p delivers m before m0 if and only if q delivers m before m0.

No gaps!

Same order!

124

Primary Order

Local primary order: If a primary broadcasts (v, z) before it broadcasts
(v'; z'), then a process that delivers (v,z) must have delivered (v',z')
before (v,z).

Global primary order: Suppose a primary Pi broadcasts (v,z), and a
primary Pj > Pi broadcasts (v',z'). If a process delivers both (v,z) and
(v',z'), then it must deliver (v,z) before (v',z').

Primary integrity: If a primary Pe broadcasts (v,z) and some process
delivers (v',z') which was broadcast by Pe' < Pe, then Pe must have
delivered (v',z') before broadcasting (v,z).

FiFo
order!

No gaps!

After: ZooKeeper's atomic broadcast protocol:Theory and practice,
Andre Medeiros

125

Zab Protocol

After: ZooKeeper's atomic broadcast protocol:Theory and practice,
Andre Medeiros.

Peers try to find a
leader, store votes
in vol.mem.

Leader tries to find
the most up-to-
date sequence of
TA's in a quorum.
New epoch
defined

Leader suggests
TA's to followers
who miss some.
Quorum
acceptance
establishes leader

Broadcast layer is
ready to perform
new state changes
under the new
leader.

126

Zab Protocol Phase 1: Discovery

After: ZooKeeper's atomic broadcast protocol:Theory and practice,
Andre Medeiros. Peers try to find a leader, store votes in vol.mem.

Own history more current!

Accept new epoch!

Collect most up-to-date history from peers

Non-volatile!

127

Zab Protocol Phase 2: Synchronization

After: ZooKeeper's atomic broadcast protocol:Theory and practice,
Andre Medeiros. Leader suggests TA's to followers who miss some.
Quorum acceptance establishes leader

Update local history and store it

Update peers and commit

Never accept requests from an older
(smaller) epoch!

Leader got quorum for updates. Peers
deliver their history to application

128

Zab Protocol Phase 3: Broadcast

After: ZooKeeper's atomic broadcast protocol:Theory and practice,
Andre Medeiros. Broadcast layer is ready to perform new state changes
under the new leader.

A new peer joined needs to be updated

New update with new TA number

Non-volatile or volatile?

Wait until all previous TA's have arrived and
deliver TA's in order to application.

129

ABCast Implementations

One of the best reads about implementation: T. D. Chandra, R.
Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing. ACM,
2007, pp. 398–407. Learn how fault-tolerance can mask errors etc.

- Implementing the theoretical invariants of such protocols is hard

- Non-volatile stores hurt performance and throughput

- Error detection is needed to recover from async. Protocol

- Frequent leader changes hurt throughput

- Consistency sometimes lowered for performance reasons

- Watch out for Byzantine errors like disk failures

130

Highly-Available Transactions

131

HA Transactions

P.Bailies et.al., HA Transactions, Virtues and Limitations. HATs offer a
one to three order of magnitude latency decrease compared to
traditional distributed serializability protocols, and they can provide
acceptable semantics for a wide range of programs, especially those
with monotonic logic and commutative updates

- Transactional guarantees that do not suffer unavailability during system partitions
or incur high network latency. (Non-failing Replica MUST respond)
- Not CAP: linearizability as being able to read the most recent write from a replica
- Not: Serializability, Snapshot Isolation and Repeatable Read isolation are not
HAT-compliant
- Read Committed isolation, transactional atomicity, etc. are possible with
algorithms that rely on multi-versioning and limited client-side caching.
- causal consistency with phantom prevention and ANSI Repeatable Read need
affinity with at least one server (sticky sessions)
- HA systems are fundamentally unable to prevent concurrent updates to shared data
items and cannot provide recency guarantees for reads

132

HA-Transactions

Highly Available Transactions: Virtues and Limitations (Extended Version), Peter Bailis,
Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,
http://arxiv.org/pdf/1302.0309.pdf

133

Consistency Models

From: Caitie McCaffrey, Building Scalable Stateful Services,
Strangeloop 2015

134

Consistency with Sticky Sessions

From: Caitie McCaffrey, Building Scalable Stateful Services,
Strangeloop 2015

135

The World's Worst Distributed DB...

Uses approximately the same amount of electricity as could power an average American
household for a day per transaction.
Supports 3 transactions / second across a global network with millions of CPUs/purpose-built
ASICs.
Takes over 10 minutes to “commit” a transaction
Doesn’t acknowledge accepted writes: requires you read your writes, but at any given time
you may be on a blockchain fork, meaning your write might not actually make it into the
“winning” fork of the blockchain (and no, just making it into the mempool doesn’t count). In
other words: “blockchain technology” cannot by definition tell you if a given write is ever
accepted/committed except by reading it out of the blockchain itself (and even then)
Can only be used as a transaction ledger denominated in a single currency, or to
store/timestamp a maximum of 80 bytes per transaction

But it is auditable and completely decentralized!

Toni Arcieri, On the dangers of a blockchain monoculture,
https://tonyarcieri.com/on-the-dangers-of-a-blockchain-monoculture
Maurice Herlihy, Blockchains From a Distributed Computing Perspective,
ommunications of the ACM, February 2019, Vol. 62 No. 2, Pages 78-85
10.1145/3209623

https://tonyarcieri.com/on-the-dangers-of-a-blockchain-monoculture

136

Resources (1)
Daniel Abadi, Problems with CAP and Yahoo's little known NoSQL system, http://dbmsmusings.blogspot.de/2010/04/problems-with-

cap-and-yahoos-little.html

Java Data Objects Version 1.0 (www.java.sun.com)

Concurrency Control and Recovery in Database Systems, Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman

 http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx (free book)

Multi-Version-Concurrency-Control (MVCC), http://research.microsoft.com/en-us/people/philbe/chapter4.pdf

Davidson, Garcia-Molina, Skeen, Consistency in Partitioned Networks,
http://www.cs.cornell.edu/courses/CS614/2004sp/papers/DGS85.pdf

Making Snapshot Isolation Serializable, Fekete, Liarokapis, O'Neil, O'Neil, Shasha,
http://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf

Fekete, Goldrei, Asenjo, Quantifying Isolation Anomalies, http://www.vldb.org/pvldb/2/vldb09-185.pdf

Alvaro, Conway, Hellerstein, Marczak, Consistency Analysis in BLOOM: A CALM and Collected Approach,
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf

Arjun Narajan, https://ristret.com/s/f643zk/history_transaction_histories (perfect intro to Tas and serialization)

Atul Adya, PhD Thesis, Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions

http://www.vldb.org/pvldb/2/vldb09-185.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://ristret.com/s/f643zk/history_transaction_histories

137

Resources (2)

• Colouris et.al., Chapters 12 an 13
• Ken Birman, Building secure and reliable network

applications, Chapter 21 (Transactional Systems).
• Grey/Reuters, Transaction Processing (The bible of TA’s)
• The Postgres manual (for isolation levels)
• Don Chamberlain, Universal Database (even though it’s on

DB2 and UDB he knows how to explain the database stuff
perfectly – easy to read as well!)

• Meet the experts: Gang Chen on Transactions. Details of
Websphere TA processing for J2EE architecture. With
further links.
http://www-128.ibm.com/developerworks/websphere/libra
ry/techarticles/0502_chen/0502_chen.html

138

Resources (3)
Java Communicating Sequential Processes. Middleware that implements Hoares CSP in Java. Excellent introduction by Abhijit

Belapurkar on http://www.developers.net/node/view/849 (three parts with many links, e.g. on Pi-calculus for mobility,
model checker for parallel process networks

Serializability Theory for replicated data, http://research.microsoft.com/en- us/people/philbe/chapter8.pdf

Analysis of Replication and Replication Algorithms in. Distributed System. Nikhil Chaturvedi. Prof. Dinesh Chandra Jain.
http://www.ijarcsse.com/docs/papers/May2012/Volum2_issue5/V2I500414.pdf

Benjamin Reed, Zookeeper, the making of. https://developer.yahoo.com/blogs/hadoop/apache-zookeeper-making-417.html

Zookeeper Overview, Apache, https://zookeeper.apache.org/doc/trunk/zookeeperOver.pdf

Marco Serafini, Zab vs. Paxos (primary-backup vs. state-machine-replication)
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab+vs.+Paxos

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serani. Zab: High-

performance broadcast for primary-backup systems. In DSN, pages 245{256. IEEE,

2011. ISBN 978-1-4244-9233-6 (crash-recovery model).

Call-me-maybe: MariaDB Galera Cluster, https://aphyr.com/posts/327-call-me-maybe-mariadb-galera-cluster (Kyle Kingsbury)

“Jepsenblog Series” by Kyle Kingsbury on Distributed Systems Correctness: aphyr.com/posts/jepsen

ZooKeeper's atomic broadcast protocol:Theory and practice, Andre Medeiros

T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An engineering perspective,” in PODC ’07: Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed computing. ACM, 2007, pp. 398–407

G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehensive study,” ACM Comput.
Surv., vol. 33, pp. 427–469, December 2001.

Tyler Treat, https://bravenewgeek.com/building-a-distributed-log-from-scratch-part-1-storage-mechanics/ (parts 1 to 5)

https://bravenewgeek.com/building-a-distributed-log-from-scratch-part-1-storage-mechanics/

139

Resources (4)
 Peter Bailis, When ist “ACID” ACID? Rarely! http://www.bailis.org/blog/when-is-acid-acid-rarely/

 Peter Bailis, HAT, not CAP: Introducing Highly Available Transactions, Feb. 2013,
http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/

Peter Bailis et.al., Highly Available Transactions: Virtues and Limitations, (Extended Version)

Marc Shapiro, A comprehensive study of Convergent and Commutative Replicated Data Types, Shapiro et al., 2011

Pat Helland, Immutability changes everything! (an overview of techniques based on immutable data)
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Adrian Colyer, Bolt on Causal Consistency, http://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/, morning paper on
Bailis et.al, http://www.bailis.org/papers/bolton-sigmod2013.pdf

A.Colyer, ‘Cause I’m Strong Enough: Reasoning About Consistency Choices in Distributed Systems, February 3, 2016,

http://blog.acolyer.org/2016/02/03/the-rule/

Understandable RAFT visualization: http://thesecretlivesofdata.com/raft/

http://www.bailis.org/blog/hat-not-cap-introducing-highly-available-transactions/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
http://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/
http://www.bailis.org/papers/bolton-sigmod2013.pdf
http://blog.acolyer.org/2016/02/03/the-rule/
http://thesecretlivesofdata.com/raft/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

