

Introduction to Distributed Systems

Prof. Walter Kriha, fall term 2022 (last DS lecture)

Hochschule der Medien

A Bit of Motivation...

Looks like there is more to it than just tech...

Overall Goals

• Learn the basic concepts of Distributed Systems like
concurrency and remoteness, consensus and failure
models.

• Understand different programming models for
Distributed Systems

• Acquire a theoretical foundation of computability in
distributed systems

• Learn to design distributed systems with a focus on
performance, availability, scalability and security

• Understand the constraints imposed by hardware and
failures

• Learn what it takes to BUILD middleware for DS

Goal for today

• Give an overview of distributed systems.
Later lectures will dig into the gory details
like security, transactions, remote calling
mechanisms etc.

Introduction

• What is a Distributed System (DS)
• What makes it difficult for Developers?
• Why distribute?
• Examples of DS
• Characteristics of DS
• Middleware for DS
• Concepts and Architectures (Scale,

Parallelism, Latency etc.)
• Resources

Definition of a Distributed System:

Independent agents repeatedly interacting in a
way that a coherent behavior („system“) emerges.
Events happen concurrently and parallel.

Agents are dumb or intelligent, with incomplete local information, differ in capabilities,
suffer from random events (local or network). See: A.B.Downey, Think Complexity

Emergence

Strong Emergence: We cannot predict what will emerge (Chalmers, game of life)

Weak Emergence: Things are combined by simple principles but the result surprises
(flock of birds)

Evolutionary Emergence: from egg to human being: Complex but robust

Constructed Emergence: e.g. Distributed Systems: Complex but often NOT robust

Emergent Failure Modes: Cascading Failures in Constructed Emergence

More: K.Mitchell, http://www.wiringthebrain.com/2022/05/the-
riddle-of-emergence-where-do-novel.html

More: https://slack.engineering/slacks-incident-on-2-22-22/
You should check out Laura Nolan’s talks on youtube.
Theory: Metastable Failures in Distributed Systems
N. Bronson, https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-
bronson.pdf

Emergent Failure Mode Example

What caused us to go from a stable serving state to a state of
overload? The answer turned out to lie in complex interactions
between our application, the Vitess datastores, caching system,
and our service discovery system.

https://slack.engineering/slacks-incident-on-2-22-22/

Why is a DS difficult for Devs?

Finally, all distributed systems algorithms are based on the failures we expect and how
we treat them. It took me quite a while to really understand this fundamental point….

Emergence

Single Machine View

Errors are the Fabric

There is NO free Lunch

It is total end-to-end System Engineering

Single Machine View

Kevin Henney, https://www.infoq.com/news/2022/09/distributed-system-knowable/?
itm_source=infoq&itm_medium=popular_widget&itm_campaign=popular_content_list
&itm_content=

“Developers typically view the world through their IDE, from the

perspective of a single machine. They default to reasoning about a system

through the lens of the code that is immediately in front of them. Although

they are consciously aware of the network as a source of failure,

concurrency, asynchrony and latency, their porthole view does not

necessarily cause them to take a step back and appreciate what they consider

situational – a problem in this case – is actually foundational; that it arises

from the nature of the system.”

Errors are the “fabric” of a DS

Kevin Henney, https://www.infoq.com/news/2022/09/distributed-system-knowable/?
itm_source=infoq&itm_medium=popular_widget&itm_campaign=popular_content_list
&itm_content=

“Although exception handlers might acknowledge failures, they don’t

reflect their normality. I’ve seen more than one coding guideline state that

"exceptions should be exceptional". This advice is little more than wordplay

– it’s neither helpful nor realistic. There is nothing exceptional about

timeouts, disconnects and other errors in a networked environment – these

are "business as usual".

These "little issues" are also not little: they shape – in fact, they are – the

fabric from which a distributed system is made.”

There is NO free Lunch!

When google, myspace, facebook etc. started, they had to go back to FIRST
PRINCIPLES and ask hard questions: do you really need xxxxx?

You want to scale to huge request numbers? Forget classic stateful

You want to write Tera/Peta/Exabytes? Maybe give up some consistency

You want thousands of participating machines? Perhaps need to give up

some ordering assumptions?

You want billions of customers? Perhaps invent fallback procedures?

You want ultra-fast responses? Learn async communication

Total end-to-end System Engineering

A single request touches ALL these things. That is the reason DS-problems are so hard
to diagnose and fix.

Front-end technologies

Databases

Networking

Protocols/API Design

Queuing Networks

Operating Systems

Warehouse-scale computing

Queues

Web Server

Cluster Technologies

Monitoring

And much much more….

Why Distribute?
• Robustness/resilience: avoid single points of

failures (e.g. Use hot stand-by data centers) with
replication

• Performance: Split processing into independent
parts

• Scalability/Throughput: allow millions of
requests/sec

• Security: create different security domains
• Price per request: use cheaper horizontal scaling or

free resources

See: M.Cavage, There's Just No Getting around It: You're Building a Distributed
System, ACM Queue, April. 2013

Examples of Distributed Systems

• Energy grid, telcom net
• Villages, towns and big cities
• It-Infrastructure of large companies
• High-performance clusters
• Google, Facebook and Co.
• The Web
• The human body, organizations, states
• A flock of birds

The energy grid now: hub and spoke

Power-
plant

factory

officehome home

home

Electricity flows in one direction only, with a lot of it lost
during transport. Control resides with the power plant.

www.wired.com/wired/archive/9.07/juice.html

The future grid : micropower

Power-
plant

factory

officehome home

home

Power flows many directions, controlled by independent
sensors in the grid. A tenfold increase of transactions. Modern
GRID computing allows users to tap into a wealth of
distributed computing resources. http://www.thegridreport.com/

Fuel
cell

Fuel
cell

Fuel
cell

Fuel
cell

Fuel
cell

carcar

car

The German “Energiewende”

Diag: Stefan Riepl, CC
Attrib. Share-Alike 2.0,
wikimedia commons

Bi-directional flow of energy. Real-time flow control.
Resilient architecture? Load-Balancing, Observability?

De-Carbonization as a DS Problem

Astrid Atkinson, 2022
https://www.infoq.com/presentations/distributed-system-decarbonize/

https://www.infoq.com/presentations/distributed-system-decarbonize/

Scale and Distributions: Power Laws

Villages, Web-Sites, Earthquakes and many others follow power-laws
of scale.

20

80

most detailed image of a human cell to date

https://twitter.com/microscopicture/status/1520859755547398149

@microscopicture

Found via:
highscalability.com

IT-Infrastructure of large corporations

Customer data zone

Un-trusted
clients

Processing zone

Modern Web Application Architecture

Jonathan Fulton, Storyblocks, Web Architecture 101
The basic architecture concepts I wish I knew when I
was getting started as a web developer

Warehouse-Scale Machines

Datacenters are huge distributed systems, requiring special
middleware. Diagram from: Barroso et.al., The Datacenter as a
Computer. Jupiter network bandwidth 2015: 1.5 Pb/sec. (reads
US-library of congress in 1/10 sec.)

World Wide Web

Internet

Intranet

Dialup clients live at the „edges“ of the internet (no fixed IP address,
slow upload). How many graphs are layered on top of the physical
network structure? (hyperlinks, search-engines, DNS)

DNS

The New Web

Internet

Aggregation of external information and collaboration based on social networks will bring
new forms of content production and consumption and consumer areas will influence
companies („consumerization“, Gartner Group). More interconnection of different net-
types brings more emergent phenomenons.

Sensors

P2p overlay

Location
based service

mashups

Closed
social
network
overlay??

Mobile PAN
network

Real world
Cams

Private
Protocols

Cloud and the Edge

Todd Hoff,
Public Cloud Postcentralization is the Thin Edge of the Wedge into the Enterprise

http://highscalability.com/blog/2018/9/10/public-cloud-postcentralization-is-the-thin-edge-of-the-wedg.html

Distributed Application Structure

Characteristics of Distributed Systems
• influence of distribution topology and remoteness

• emergent behaviors, concurrent events

• few analytic solutions, few model-based approaches

• heterogeneous components

• no global time

• a strong need for security

• concurrency, parallelism and replication

• failure models define everything!

Don‘t worry, we‘ll dig into all this another day!

The Eight Fallacies of Distributed Computing

“Essentially everyone, when they first build a distributed application, makes the
following eight assumptions. All prove to be false in the long run and all cause big
trouble and painful learning experiences.” (there was an excellent talk at Strangeloop
2014)

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

Programming Languages and Distributed
Systems

Transparency Camp:

-Hide remoteness from
programmer

-Create Type-safe
interfaces and calls

-Hide Security, Storage
and Transactions behind
frameworks (.net, EJBs)

-Think DS as a
programming model

Message Camp:

- simple CRUD interface.
Message content is interface
- Coarse grained messages
(documents)
- programmers deal with
remoteness directly
- Event based or REST
architectures

A short history of DS (1)

90s >20102000s50s-80s

- basic papers
on time,
consensus,
computability
etc.

- connecting
Intranet
applications
(CORBA,RPC,
COM, DSOM)
- C/S WebServer
- Programming
Models dominate

- peer-to-peer
software (file
sharing)
- large social sites
emerge (write probl.)
- scalability and
performance key
- message passing
- parallel batch
processing
(map/reduce)
- Ram replaces disc
- CAP: AP/CP
eventual consistency

- ware-house scale
- fan out architectues
- online and one-pass
algorithms
- realtime stream
processing
- Flash memory
- network performance
key
- microservices and
 Serverless computing

A short history of DS (2)

Topic/Queue

Pub-Sub

Deliv.G.
Marshal.

Unix RPC

SOA

Sockets

Ftp

Event Arc.

http(s)

HATEOAS

Messages

CRUD

MOM

REST

Micro-Serv.

Messages

CRUD
Messages
Deliv.G.
Marshal.

Messages

CRUD
Messages
Deliv.G.
Marshal.

Web-Services

Messages

CRUD
Messages
Deliv.G.
Marshal.

Object Sem.

Messages

Corba Serv.

Corba/RMI

EJB/.NET

Interface Definitions/ proxy-stub generat.

MessagesMessages

XML/Json

Reactive Process Pipelines

Streams

Macro-Serv.

FrameworksInet App

Async Proc.

P2P App

Distr.Hasht

FileShare Intranet Ap. Amazon W.S.

Distribution Topology
e.g.The „small world“ effect:

It takes only a small number of intermediate persons to
connect any person on this world to any other one. (A
knows B, B knows C, F knows G.)

From: The Milgram experiments on social networks.
(Andy Oram, Peer-To-Peer, Harnessing the power of
disruptive technologies). OpenBC or LinkedIn create a
social network from distributed participants.

Topology Effects

How efficient can this DS transport messages? Queries?

How robust is it against random attacks on nodes,
targeted attacks on the important connecting nodes?

High local
clustering

Metcalfe’s law - Network Effects

• The usefulness of a network grows by the square of the number
of users (think about a fax machine – how useful is one?)

• The adoption rate of a network increases in proportion to the
utility provided by the network. (That‘s why companies give away
software e.g.)

• Are network effects responsible for scale-free (power law)
distributions?

Why don't we see lots of facebooks, googles etc.?

Emergence

„An emergent property is a characteristic of a system that results from
the interaction of its components, not from their properties. []
Emergent properties are surprising: it is hard to predict the behavior of
the system, even if we know all the rules“. A.B. Downey, Think
Complexity (www.thinkcomplexity.com)

Emergent Behavior – a flock of birds

There is no central controller, no „Super-bird“. No bird has a representation of the figure
in its head. Instead, every bird follows very simple rules. The resulting figure shows
EMERGENT behavior. Many distributed systems show it as well – for good or for bad.
(Kevin Kelly, Out of Control – The biology of the new machines. Peter Wegner,
Interaction vs Algorithm.) Picture: http://www.pdfnet.dk/ (PD)

http://www.pdfnet.dk/

Heterogeneous Components

Hardware unreliable

Frequent downtimes

Little endian byte order

Java Data Types

No callbacks

Slow, no access control

Fault tolerant hardware

System management

Big endian byte order

C++ data types

Fast, access controlled

Security in Distributed Systems

Authentication

Authorization

Integrity, Confidentiality

But: sometimes anonymity is needed!!

(peer-to-peer systems)

Secure Delegation

DB

Backend
security

Security Topics

• Authentication (who are
you?)

• Authorization (what can
you do?)

• Confidentiality (can
someone spy on us?)

• Integrity (Did somebody
change your message?)

• Non-repudiation (It was
you who ordered X)

• Privacy/Anonymity

• Firewalls
• Certificates, Public Key

Infrastructure, Digital
Signature

• Encryption (methods and
devices)

• Software Architecture
• Intrusion Detection
• Sniffing
• PGP, SSL etc.
• Denial of Service attacks

Theoretical Foundations of DS

• No global time (logical clocks, vector clocks)

• FLP theorem of asynchronous systems

• The problem of failure detection and timeout

• Concurrency and deadlocks

• CAP theorem: consistency, availabilty and
partitioning: choose two only!

• End-to-end argument

• Consensus, leader selection, etc.

Important Programming Terms for DS

• Identity

• Value vs. Reference

• Exception

• Interface vs. Implementation

• Interface Definition Languages (IDL)

• Quality of Service (QOS)

• Stubs/Proxies

Distributed System Design

• Common Problems (performance, fail-over,
maintenance, policies, security integration)

• Information Architecture (define and qualify the
information fragments and flows)

• Distribution Architecture (create a map of all
participating systems and their quality of service)

Methodologies
• Analytic Solutions: Queuing Theory based
• Simulation (Spin, Promela, etc.)
• TSA+, Leslie Lamport
• Jeff Dean (Google), Back of the envelope

calculations

 Designs, Lessons and Advice from Building Large Distributed Systems, Jeff
Dean, Google

Know your numbers!
- read/write ratios,
random, sequential
- bandwidth, latencies
- hardware (solid state
etc.)
- memory hierarchy
- thread-level parallelism
and multi-cores

Latency Numbers

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Advanced Napkin Math: Base Rates

From: Simon Eskildsen, Advanced Napkin Math: Estimating System Performance from First
Principles, Shopify, Talk at SREcon 2019 https://youtu.be/IxkSlnrRFqc

Also: watch
bandwidth
delay rate!!

https://youtu.be/IxkSlnrRFqc

Advanced Napkin Math: Applied

From: Simon Eskildsen, Advanced Napkin Math: Estimating System Performance from First
Principles, Shopify, Talk at SREcon 2019 https://youtu.be/IxkSlnrRFqc

https://youtu.be/IxkSlnrRFqc

Middleware for Distributed Systems

What is Middleware?
- it is libraries, components or services helping you in creating distributed applications

- it has glue-code and generators to let e.g. c++ clients talk to java servers.

- it controls messages and enforces so called delivery guarantees, e.g. like at-least-once

- it re-orders requests from participants to create a causal or total ordering

- it takes over responsibility for messages, possibly even storing them in between

- it creates groups of nodes which process events together and controls fail-over

- it hides things like differences in hardware, location of services and offers load-balancing

- it allows filtering of requests or provides means to add additional security info to calls

- it does monitoring of requests to the nearest storage subsystem

- it provides powerful services like locking, scheduling and messaging to applications

- powerful frameworks provide automatic storage, security checks and transactional control

- message bus architectures provide loose coupling through pub/sub functions

The easiest way to understand the importance of middleware is to start developing a distributed
application on the raw socket level and see what is missing. There is no doubt about the need
for middleware, just the extent of it is heatedly discussed (e.g. Amazon's Werner Vogel: we
don't do frameworks at Amazon..)

General structure of a distributed system as middleware.

1-22

From: van Steen/Tanenbaum

Components of a Distributed Operating System

scheduler

Failure detectorDistributed file system

Key/value store

Consensus algor.

Membership service

IP service relocator

Load balancer

Locking service

Consistent hashing

Memory cache

Optimistic repl.Map reduce

Failure Models

Fragment handler

Log Service

Notification Service

Data Analysis and Request Processing Applications

Queue

APIs

The Transparency Dogma

• Middleware is supposed to hide remote-
ness and concurrency by hiding distribution
behind local programming language
constructs

Critique: Jim Waldo, SUN

Full transparency is impossible and the price is too high

Distribution Transparencies

• Access: mask differences in languages and data representation (e.g thrift, protocol
buffers)

• Failure: mask failures to enable fault tolerance by automated fail-over to other servers
• Scalability: intelligent load-balancing of requests,
• Redundancy: transparent replication of data
• Location: use logical, not physical names to access services. Allows changing services
• Migration: hide the true location of a service or object from clients. If the location

changes, the client won‘t notice it.
• Persistence: automatically load/store data on-demand to unload server memory
• Sharding: distribute storage requests across backend systems (virtual storage)
• Transactions: make requests ACID
• Security: automatically check for the required credentials or roles in requests
• Monitoring: create central logs with correlation IDs joining requests parts across nodes

Where do we find Middleware?

Application
Server
Web-
Tier

Application
Server
EJB
Tier

LDAP

E-bank
News

Quotes

Distributed
Cache

Web
Server

CORBA

RMI
/Rest XML-RPC

WebService
/Jason

JMS

JDBC

Part of a Portal running on a
Web Cluster.

Directory

JNDI

Classification
• Socket Based Services (
• Remote Procedure Calls (RPCs)
• Object Request Brokers (CORBA, RMI)
• Message Oriented Middleware (MOMs) and Event-Driven-

Systems, Reactive Systems
• Web-Services (XML-RPC, SOAP,UDDI) and SOA, REST
• Frameworks (Enterprise Java Beans, J2EE)
• Peer-To-Peer (Napster, Gnutella, Freenet, seti@home)
• Agent based (Jini, Aglets)
• Tuple-Spaces, distributed blackboards
• Warehouse-Computing Architectures, Data Centers

RPC type Middleware

• E.g. Sun-RCP, apache thrift, google protocol buffers
• Main idea: allow remote function calls across languages.

Provide concurrent and parallel processing of requests
• Has generators to create language specific glue code
• On top of it, all kinds of distributed components can be built:

Directory, File system, Security
• Apache Thrift, jnb.ociweb.com/jnb/jnbJun2009.html

Provides the “plumbing layer” of distributed systems: NEVER
build remote functions without the help of such a library!

Distributed “Objects”

• Object Request Broker
• Multi-language support

(platform independence)
• Interface Definition

language
• Wire Protocoll: IIOP,

GIOP

• Java only (e.g.Introspection
used)

• Lightweight method call
semantics

• Java Implementations
• Wire Protocoll now mostly:

RMI over IIOP

Both try to preserve object semantics. Interface/Implementation
separation. Object semantic not good for the Internet!

CORBA RMI

Distributed Computing Frameworks
• Objects are too granular: performance and

maintenance problems
• Programmers need more help: separation of concerns

and context

Solutions:
• Enterprise Java Beans
• CORBA Components
• COM+
• .NET
• Spring, Ruby on Rails etc.

EJB: Concerns and Context

Automatic Transaction
Management

System Management defines Data
Sources and Containers

EJB Framework (Separation
of concerns):

Deployment (Separation of
context):

Concurrency Control

Automatic, method level Security

System Management defines Pool sizes

System Management defines
Role/User Binding

From EJB Container ...

Client Entity Bean
invoke

delegate

At the point of
interception the
container provides
the following
services to the bean: Resource management, life-cycle, state-

management, transactions, security, persistence

Load/

persist

 To Serverless Computing

Client Function
invoke

Gate

Function as a Service Frameworks provide auto-scaling, life-cycle,
security for business logic functions

Load/

persist

Distributed Messages (MOM)
Asynchronous, loosely-coupled (fault tolerant), persistent
messages with either publish/subscribe (topics) or queuing
semantics. Scales well. Delivery guarantees differ.

Pub

Sub

Sub

Sub

Topic

publish send

MOM

Pub Sub

Sub

M2

Put
(M1,M2)

Get

M1

Get

queue

MOM

Distributed Code I (Agents, Aglets)

OS

Agent
Runtime

Agent

Channel
OS

Agent
Runtime

Agent

Serialized Agentpack unpack
Perform
work,
come
back
with
results

The Problem: who wants a new runtime system?

Distributed Code II (Jini) – The End of
Protocols?

Jini Lookup
Service

Jini Client Jini Service

Service Proxy Code

Proxy moves to
lookup service
during
registration

Proxy moves to
client during
service lookup

Service private
protocol

Peer 2 Peer: from shared files to global ledger

INTERNET
 DNSNodes have no

fixed IP address and
frequent down-
times

P2P uses cycles,
provides file sharing and
anonymity because no
central servers are used

Seti@home, freenet
JXTA etc.

ISP

ISP

ISP

Problems: File Versioning? Overhead? Consensus? Security?

WebServices: Same, Same...

Use your “de-hyper” generously!

XML Syntax/HTTP

Universal Description, Discovery and Integration
Web Services Description Language

SOAP

Registry (advertise)

Service features
exchange messages
Wire Format/
Transport

Promises de-coupling of service provider and requester,
document interfaces, machine-to-machine communication
and ease of use compared to distributed objects.

Service Granularity? Application, Component, Object or Request?

Web Server Broker

Security, Transactions etc. Core services

Warehouse-Scale Computing

The abstraction: single system
image

Data-centers
world-wide

Fan-out Architecture

Jeff Dean, " Achieving Rapid Response Times in Large Online Services"
http://research.google.com/people/jeff/latency.html and Luiz Barroso, "Warehouse-Scale
Computing: Entering the Teenage Decade" http://dl.acm.org/citation.cfm?
id=2019527&CFID=39785911&CFTOKEN=33778723

> 100.000 request/sec

Replication

1.5 Pb/sec
network
traffic

http://research.google.com/people/jeff/latency.html
http://dl.acm.or/

69

Cloud Computing: Cells and Zones

Peter Voss, AWS re:Invent 2018: How AWS Minimizes the Blast
Radius of Failures (ARC338) https://www.youtube.com/watch?
v=swQbA4zub20&feature=youtu.be

(Tuple) Spaces

The abstraction: Anything can
be stored as long as it is
addressable

A space providing tuple storage

users or agents storing or
finding tuples

The worlds largest space is the WWW. Other spaces are WIKI-WIKI collaboration
systems or more traditional tuple spaces like tspaces or jspaces. The principle is always
the same: a few simple methods (put/take/find) which lets users or machines store or find
content. The content itself is returned as a representation of a resource. That‘s why some
people call those systems REST (Representational State Transfer Architecture), after a
theses from Roy Fielding, the father of http.

users or agents interacting
through the space

How to BUILD middleware?

• Delivery guarantees
• Process models
• Failure models
• Logical time protocols
• Consistency models
• Atomic broadcast
• Fan out architectures
• Partitioning and scaling
• Partition functions
• High availability patterns
• Concurreny patterns
• Replication
• Transactions
• Log-structured merge trees

• Causality and vector clocks
• Consistent hashing
• Distributed security
• Scalability and reliability
• Monitoring, tracing, logging
• Observability
• Scheduling algorithms
• Distributed deadlock detection
• Thundering herds
• Cell architectures
• Latency and bandwidth
• Locality, sharing, connection pooling
• And much more….

Course - Timeline
1. Introduction to DS
2. Theoretical models of distributed systems (queuing theory, process and I/O models)
3. Message protocols (delivery guarantees, causality and reliable broadcast, socket API)
4. Remote procedure calls (classic functions, marshaling, thrift, gRPC, http2.0)
5. Remote objects and frameworks (RMI, EJB)
6. Theoretical foundations of DS (FLP, time, causality and consensus, eventual

consistency and optimistic replication)
7. Distributed Services and Algorithms I (balancing, message queues, caching, consistent

hashing)
8. Distributed Services II (persistence, transactions, eventual consistency, coordination)
9. Distributed Security (AAA, secure delegation, backend security)
10. Design of Distributed Systems: Methodology and Examples, fan-out architectures
11. System Management in DS (monitoring, chaos monkeys, patterns of resilience)
12. Service Architectures: SOA and Microservices
13. Peer-to-Peer Systems and the Distributed Web (Distributed hashtables, blockchain,

onion routing, distributed consensus)
14. Ultra-large-scale Systems (Scalability, performance, network and datacenter design)

Homework for next Session!

READ:

Distributed Systems for fun and profit: (exam-relevant!!)
http://book.mixu.net/distsys/single-page.html

http://book.mixu.net/distsys/single-page.html

 Literature
• Distributed Systems for fun and profit: (exam-relevant!!)

http://book.mixu.net/distsys/single-page.html
• Jeff Hodges, Notes on Distributed Systems for Young Bloods
• Brendan Burns, Designing Distributed Systems Patterns and

Paradigms for Scalable, Reliable Services
• www.infoq.com on DS frameworks, QCON Videos etc.
• Werner Vogels (Amazon CTO): www.allthingsdistributed.com
• The Source: www.highscalability.com (Todd Hoff)
• Queue.acm.org, free magazine on scalability etc.
• What we do when we talk about distributed systems, Alvaro

Videla, http://videlalvaro.github.io/2015/12/learning-about-
distributed-systems.html

• Martin Kleppman, Data-Intensive Applications
• Google: Site Reliability Engineering
•

http://book.mixu.net/distsys/single-page.html
http://www.infoq.com/
http://www.allthingsdistributed.com/
http://www.highscalability.com/

Resources (Papers)
• Jim Waldo, A note on Distributed Computing (on the transparency dogma in DS)
• Leslie Lamport, Paxos made simple,

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
• Leslie Lamport, Time, Clocks and the ordering of events in distributed systems,

http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
• Shavit et.al., Atomic Snapshots of Shared Memory,

http://people.csail.mit.edu/shanir/publications/AADGMS.pdf
• L.A.Barroso, J Clidaras, U.Hölzle, The Datacenter as a Computer – An Introduction

to the Design of Warehouse-Scale Machines, 2nd Edition 2013 (a google book)
http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC02
4

• Harvest, Yield and Scalable Distributed Systems, Amando Fox, Eric Brewer,
(CAP etc.)

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
http://people.csail.mit.edu/shanir/publications/AADGMS.pdf
http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/pdf/10.2200/S00516ED2V01Y201306CAC024

Resources (Programming)

• Wolfgang Emmerich, Engineering Distributed Objects
(www.distributed-objects.com) With slides and tests.

• Ted Neward, Java Server Side Programming (sockets,
servlets etc.) www.manning.com/neward

• www.swarm.org, portal for swarm programming. Used also
as simulation tools for research in economics and finance

• Apache Thrift, http://jnb.ociweb.com/jnb/jnbJun2009.html
• Bjorn Hansen, Real World Web Performance & Scalability

http://jnb.ociweb.com/jnb/jnbJun2009.html

Resources (Basics)
• Coulouris, e.al., Distributed Systems
• Andrew Tanenbaum, Maarten van Steen, Distributed Systems.

Get this one or Coulouris for a long term effect .
• Ken Birman, Building secure and reliable Network

Applications
• Grey/Reuter, Transaction Processing
• Jiro/Federated Management Architecture (FMA)
• M.Cavage, There's Just No Getting around It: You're Building a Distributed

System, ACM Queue, April. 2013, http://portal.acm.org/ft_gateway.cfm?
id=2482856&type=pdf

Resources (Theory)
• Designing Distributed Systems, A Conversation with Ken Arnold, Part III,

http://www.artima.com/intv/distribP.html , shows importance of failures and
state in DS

• The Paradigm Shift from Algorithms to Interaction, Peter Wegner, 1996, a
provocative short essay on why interactive systems are much more powerful
than turing machines. Shows that DS is more than just concurrency and
remoteness. The basics of emergence and non-algorithmic behavior. Good for
agent systems as well.

• Phillip J. Windley, Digital Identity,
Contains architecture of identity repositories including federation aspects.
Network effects and its effects against bilateral identity management.

• Nancy A. Lynch, Distributed Algorithms (proofs and concepts)
• Stability and topology of scale-free networks under attack and defense

strategies, Lazaros K. Gallos u.a. http://xxx.lanl.gov/pdf/cond-mat/0505201
• Albert-Laszlo Barabasi, Linked. Investigates small worlds, scale free networks

etc. Basically moves from random networks to hub/spoke architectures.
Discovered how the WWW space is organized (in/out/core/islands etc.). A
must read for everybody interested in the effects of topology (e.g. on virus
spreads)

Resources High Scalability

Reading list of HS papers,
https://github.com/binhnguyennus/awesome-scalability

https://github.com/binhnguyennus/awesome-scalability

Resources (Web)

• Tim Oreilly’s famous article on Web2.0:
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09
/30/what-is-web-20.html

• Gartner's 2006 Emerging Technologies Hype Cycle
Highlights Key Technology Themes
http://www.gartner.com/it/page.jsp?id=495475

Resources (Events, Simulation)

• Simjava, discrete event simulation package.
Tutorial at:
http://www.dcs.ed.ac.uk/home/simjava/tutorial/

• GridSim, Grid Simulation Package,
http://www.gridbus.org/gridsim/gridsim2.2/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81

