
Making Remote Calls

Remote procedure calls and their
infrastructure

2

Overview
• Call Versions (local, inter-process, remote)

• Mechanics of Remote Calls

– Marshaling/Serialization
– Data representation
– Message structure and Schema Evolution
– Interface Definition Language
– Tooling: generators

• Cross language call infrastructures (Thrift, gRPC)

• Next: Distributed Objects (CORBA, RMI)

3

Exercise: Make a Remote Call!

#include “foo.h”
Int i=5;
Char * c=”Hello World”;
Main (argc, argv) {
 Int r = foo(i,c);
}

#include “foo.h”
Int foo (int x, char* y){
 Return (strlen(y) > x) ? 0 : 1;
}

File caller.c on Host A File service.c on Host B

Create software that executes main on A and uses
function foo on B! All you have is the socket API.

4

Call Versions

• local calls

• Inter-process calls

• Remote calls

5

Remote Calls vs. Remote Messages

Call based middleware hides
remote service calls behind a
programming language call.
Tight coupling and
synchronous processing are
often a consequence of this
approach!

Message based middleware
creates a new concept: the
message and its delivery
semantics. A message
system can always simulate
a call based system but not
vice versa.

Ret = foo (int I, char * s) Socket.send(char * buffer)

6

Local, In-Process Calls

Application

Operating System

As long as we stay within one programming language no special
middleware is required. Calls into the OS are not Inter-process
calls. But: Cross-language calls within one process need special
attention (e.g. calls to native code in Java)

caller receiver

7

Local Calls

stack

data

code

intvalue= 0x1122

helloworld

charptr = 0xFFF0;

Address:0xFFF0

Char * charpointer = “SOMESTRING”;

Int intvalue = 0x1122;

Main () {

Int result = function(charpointer, intvalue);

int result function(charpointer, intvalue) {

Print(charpointer);

Intvalue++;

Return 0; // store 0 in register X

// make a “return”

Dff0 (return addr)

1122

fff0

receivers’s stack

Return:Address:0xDFF0

Caller pushes return address and
parameters on stack

Callee de-references character
pointer. Result is stored in some
register. After processing goes
back to caller through return
address

8

In-Process calls

• Fast (how fast actually?)
• Performed with exactly once semantics
• Type and link safe (but dll and dynamic loading problems)
• Either sequential or concurrent (we decide it!)
• Can assume one name and address space
• Independent of byte ordering
• Controlled in their memory use (e.g. garbage collection)
• Can use value or reference parameters (reference = memory

address)
• Transparent programming language “calls” and not obvious

messages

9

Local Interprocess Communication

Application A

Calling Layer (LPC)

Marshaling

Operating System

Application B

Calling Layer (LPC)

Marshaling

caller receiver

Flatten
reference
parameters

Find application
and function

Some systems use a highly optimized version of RPC called IPC
for local inter-process communication. See e.g. Helen Custer,
inside Windows NT, chapter “Message passing with the LPC
Facility”

Fast IPC Fast IPC

10

Local Inter-process calls

• Pretty fast
• No more exactly once semantics
• Type and link safe if both use same static libraries (but dll

and dynamic loading problems)
• Sequential or concurrent (caller does no longer control it!

Receiver needs to protect himself)
• Can no longer assume one name and address space
• Still Independent of byte ordering
• Would need cross-process garbage collection
• Can only use value parameters (target process cannot access

memory in calling process)
• No longer real programming language “calls”. The missing

features must be created through messages

11

Interprocess Calls

stack

data

code

intvalue= 0x1122

helloworld

charptr = 0xFFF0;

Address:0xFFF0

Char * charpointer = “SOMESTRING”;

Int intvalue = 0x1122;

Main () {

Int result = function(charpointer, intvalue);

int result function(charpointer, intvalue) {

Print(charpointer);

Intvalue++;

Return 0; // store 0 in register X and return

receivers’s stack

Return:Address:0xDFF0

No direct access to callers
arguments!

Dff0 (return addr)

1122

fff0

Senders stack

?

12

Inter-Process is not local!

• Latency

• Memory Barriers

• Process failures

The good news: same hardware and language at sender and
receiver, fewer security problems, a system crash affects both
sender and receiver (fail-stop semantics)

13

Local Inter-process call: Sender

stack

data

code

Integer intvalue= 0x1122

S O M E S T R I N G

Charpointer = 0xFFF0;
Address:0xFFF0

Char * charpointer = “SOMESTRING”;

Int intvalue = 0x1122;

Main () {

Int result = Callfunction(charpointer, intvalue);

Sender memory

stub
Callfunction(charpointer, intvalue) {

createMessage(“Callfunction”, “SOMESTRING”,0x1122);

Return Result = sendMessage(targetProcess, Message);

Operating System (sends message to target process)

Marshalling
layer flattens
references.Usua
lly automated
using an
Interface
Definition
Language plus
generator. LPC
layer selects
target process
and function.

14

Local Inter-process call: Receiver

data

Stack

code

Integer intvalue= 0x1122

S O M E S T R I N G

Charpointer = 0xAFF0;
Address:0xAFF0

Char * charpointer = “SOMESTRING”;

Int intvalue = 0x1122;

Main () {

Int result = Callfunction(charpointer, intvalue);

receiver memory

skeleton

CallfunctionSkeleton(message) {

Char * charpointer = getArg1(message); intvalue =
getArg2(message);

Return Callfunction(charpointer, intvalue);

Operating System (sends message to target process). Returns result to calling
process

Marshalling
layer unpacks
message and
calls real
function.

Which return
address is on
the stack?

15

Remote calls are:
• Much slower than both local versions
• No delivery guarantees without protocol
• Version mismatches will show up at runtime
• Concurrent (caller does no longer control it! Callee needs to

protect himself)
• Can no longer assume one name and address space
• Affected by byte ordering
• In need of network garbage collection (if stateful)
• Sometimes Cross-language calls
• Can only use value parameters (target process cannot access

memory in calling process)
• No longer programming language “calls”. The missing

features must be created through messages
• Frequently stateless

16

Remote Procedure Calls

Application A

Stub Library (gen.)

External Data Repres.

Operating System
Node A

Application B

Skeleton Library (gen.)

caller receiver

delivery guarantees, e.g. at
most once!

The main components of a RPC system. Not shown is the processing
framework (threading, async. Etc.). Stub/skeleton libraries are generated from
interface definitions.

Request/Reply Protocol

Operating System
Node B

Marshaling Libr. (gen.)
External Data Repres.

Request/Reply Protocol

Marshaling Libr. (gen.)

Endian-ness, format

Serialization

Proxy behavior, prog.
Lang. Call to message

I/O and Proc. Model I/O and Proc. Model

17

- Marshaling/Serialization: maps program
data to output format (binary or text)

- External Data-Representation: canonical
output format for binary data

- Interface Definition: Defines a Service

- Message Structure and Evolution

- Compilers: generate Stub/Skeleton or Proxy

- Request/Reply protocol: deals with errors

- Process/I/O layer: handles threads and I/O

Mechanics of Remote Calls

18

Marshaling/Serialization

• Language dependent output format (prioprietary, sometimes slow, limits in
expressiveness

• Language independent output format (sometimes bloated, verbose)

• Binary Schema based (sender and receiver know structure of every message, I.e. which
type/variable is at what offset, function names replaced with numbers, variable data
length encoding, compression)

• Binary self describing (the transfer format contains type and variable information as
well. Needs some flexible capabilities of the involved languages

• Textual, self describing (XML representation of types or objects, e.g. using SOAP)

• Textual with schema for reader/writer. Allows advanced schema evolution and dynamic
serializations

Definition: flattening parameters (basic types or objects) into a common transfer
format (message). The target site will do the transformation from the transfer format
into the original types or objects

The typical trade-off between speed (binary) and flexibility
(self-describing) which allows e.g. to skip unknown parts.

19

Serialization to Text

Less compact than binary. Watch out for language limits
(int/floating point) in Javascript. XML allows language
independent encoding.
After:https://martin.kleppmann.com/2012/12/protobuf.png

Class Person {
String user_name = new string(“Martin”);
Int favourite_number = 1337;
String [] interests = new array [“daydreaming”, “hacking”;
}

{
 "userName": "Martin",
 "favouriteNumber": 1337,
 "interests": ["daydreaming", "hacking"]
}

20

Serialization to Binary

Compact but requires schema allows language independent
encoding.
After:https://martin.kleppmann.com/2012/12/protobuf.png

Class Person {
String user_name = new string(“Martin”);
Int favourite_number = 1337;
String [] interests = new array [“daydreaming”, “hacking”;
}

010064d6172749663000...

21

Example (Generated) Code

• Marshalling:
Disassemble data
structures into
transmittable form

• Unmarshalling:
Reassemble the
complex data
structure.

char * marshal() {
 char * msg;
 msg=new char[4*(sizeof(int)+1) +
 strlen(name)+1];
 sprintf(msg,"%d %d %d %d %s",
 dob.day,dob.month,dob.year,
 strlen(name),name);
 return(msg);
};
void unmarshal(char * msg) {
 int name_len;
 sscanf(msg,"%d %d %d %d ",
 &dob.day,&dob.month,
 &dob.year,&name_len);
 name = new char[name_len+1];
 sscanf(msg,"%d %d %d %d %s",
 &dob.day,&dob.month,
 &dob.year,&name_len,name);
};

From: W.Emmerich

22

External Data Representation

sender

receiver

message

(little-endian)

(little-endian)

(big-endian)

receiver

(big-endian)

converts

Use as is

converts

Using a standard network byte-order (big-endian here) results
in some unnecessary conversions between little-endian hosts.
What is the big advantage compared with a “use sender
format” policy? (Hint: think about new systems)

23

Request-Reply Message Structure

Message Type
(request or reply)

Request ID
e.g. 5 = the fifth request

Object Reference of remote object
(if RMI)

Method ID/Procedure ID
(what function/method to call)

Parameters serialized

Needed for
request-reply
layer and delivery
guarantees

Used by the remote
dispatcher to create
call to proper
method or function

Optional: fields for
authentication e.g.
client credentials

24

Interface Definition (Unix RPCs)

const NL=64;

struct Player {

 struct DoB {int day; int month; int year;}

 string name<NL>;

};

program PLAYERPROG {

 version PLAYERVERSION {

 void PRINT(Player)=0;

 int STORE(Player)=1;

 Player LOAD(int)=2;

 }= 0;

} = 105040;

From W.Emmerich, Engineering Distributed Objects; Compare with
Webservices WSDL format, REST, Thrift, gRPC, XML-RPC etc.!

25

Generated: Stub/Skeleton

The steps in writing a client and a server in DCE RPC. (from
van Steen, Tanenbaum, Distributed Systems)

2-14

26

What if Data or Functions change?

- with many clients in the field, different versions need to
coexist

- forward compatibility is required: older receivers need to
understand messages from newer senders

- backward compatibility is required: newer receivers need to
unterstand messages from older senders

Wherever different senders or receivers cooperate, schema
evolution becomes an issue (databases, message queues, RPC)

27

Schema Evolution
Interface Definition:

Struct X { 1:optional int Y, default: 0

 2:required string Z

 3:optional smallint W}

Function A {1:optional “put”, void, string}

Function B { 2: required “get”, string, void}

Many serialization libraries allow the tagging of data or functions with “optional” or
“required”. They also require unique numbers for data and functions within definitions.
Some like AVRO provide complete schemas for reader and writer and allow dynamic
matching . See https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-
protocol-buffers-thrift.html

28

Exercise: What breaks compatibility?
Forward compatible Backward compatible

Change opt.->req.

Change req.->opt

Add new req.data

Add new opt data

Change funct. #

Add opt. function

Add req. function

Add data with
default

Change data size

Change funct.order

Change data order

Remove data type
in encoding

29

Stubs and Skeletons

Generated in advance from IDL file

Generated on demand from class file

Distributed in advance to all clients/servers

Downloaded on demand

There are endless ways to generate stubs and skeletons. Statically
or dynamically with the help of generators.

30

Request

Delivery guarantees revisited

Remote
N N/A N/A

maybe/
Best effort

Remote
Y N

Re-execute
request

At least
once

Remote
Y Y

Re-
transmit
reply

At most
once

Local -
no
persistence

N/A N/A N/A
Exactly
once

Local /remote Retransmit Filter

Duplicates

Semantics

Adapted from Coulouris, Distributed Systems

31

Idempotent operations

Definition:

If you can send a request a second time without
breaking application semantics if the request was
already executed the first time it was sent – then
this operation is idempotent.

Example: http “get” request. (page counter does NOT break
application semantic)

With idempotent operations you can build a request/reply
protocol using only at-least-once semantics!

32

If operation is NOT idempotent:

• Use message ID to filter for duplicate sends
• Keep result of request execution in a history list

on the server for re-transmit if reply was lost.

• Keeping state on the server introduces the problem
of how long to store old replies and when to scrap
them.

• Frequently used: client “leases” for server side
resources

33

SUN-NFS: at least once semantics
without idempotent operations

client NFS Server

/foo

Create(“/foo”)

Open “/foo”

Reply lost

client
Create(“/foo”)

NFS Server

Create “/foo”

Error, file exists!

OK

client NFS Server??(censored)!!!

(timeout)

client NFS Server
Open(“/foo”)

Error: file does not exist!
Error, file does not exist

Create “/foo”

Error: file exists!

34

Finding a RPC server

client
Portmapper

service

Tell portmapper about
program, version and
port

Start listening at port X
X

server
Ask portmapper for
program, version

On port X!

Send procedure call to
service

This is called “binding” and can be handled in different ways
(inetd, DCE, Unix portmapper)

35

Cross-Language Call Infrastructure

- CORBA
- Microsoft CLR
- Thrift
- Google Protocol Buffers and gRPC

36

Remote Cross Language Messages

IDL file:
Structure Foo {
 Var1 x; Var2 y;
 Enum z {…}
}

RPC-Compiler

.java

Foo.get_x()
Foo.get_(y)
Serialization
Reflection

.cpp

Foo->get_x()
Foo->get_(y)
Serialization
Reflection

Runtime
Framework
(encodings,
Transports,

tracing)

37

Important Questions
 Are data types easily expressed using the IDL?
 Is hard or soft versioning used?
 Are structures self-describing?
 Is it possible to change the structures later and
keep backward compatibility?
 Is it possible to change processing of structures
later and keep forward compatibility?
 Are there bindings for all languages in use at
my company?
 Do I need different encodings (binary/textual)?
 Does changing serialization require a re-
compile?
 Can I extend/change the runtime system (e.g.
add trace statements)?

38

Apache Thrift

- Simple Interface Definition Language
- Efficient Serialization in Space and Time
- Variable Protocols
- Support for different Languages
- Code Generators for Glue Code
- Soft Versioning to allow interface and data type
evolution between teams

Designed by Facebook, now an Apache project.

39

Thrift Protocol Stack

From:; A.Prunicki, Thrift Overview,
http://jnb.ociweb.com/jnb/jnbJun2009.html

40

Google Protocol Buffers
.proto file:
message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }
 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default
= HOME];
 } repeated PhoneNumber phone = 4;
}

From: protocol buffers developers guide:
http://code.google.com/apis/protocolbuffers/docs/overview.html

.cpp file:
Person person;
person.set_name("John Doe");
person.set_id(1234);
person.set_email("jdoe@example.com");
fstream output("myfile", ios::out |
ios::binary);
person.SerializeToOstream(&output);

41

GRPC
From: grpc getting started

42

gRPC-Web

https://www.cncf.io/blog/2018/10/24/grpc-web-is-going-ga/

43

The Future: quic/http3

https://arstechnica.com/gadgets/2018/11/the-next-version-of-http-wont-be-using-tcp/?
comments=1&post=36350073

https://blog.cloudflare.com/the-road-to-quic/

44

A Critique of RPCs

C. Meiklejohn, Remote Procedure Calls,
https://christophermeiklejohn.com/pl/2016/04/12/rpc.html

● Should RPCs really look like normal calls? (Im Waldo, A note on distributed
computing)
● Difficulty in recovery after malfunction or error. For instance, do we rollback or throw
exceptions? How do we handle these errors? Can we just try again?
● Difficulty in sequencing operations. If all calls are synchronous and some of these calls
can fail, it can require a significant amount of code to ensure correct re-execution to
preserve order moving forward.
● Remote Procedure Call forces synchronous programming: a method is invoked and the
invoking process waits for a response.
● Backpressure, or blocking on previous actions completing, load-shedding, or dropping
messages on the floor when the system is overloaded, and priority servicing become
more difficult with the call-and-response model of Remote Procedure Call.
● “There is, in fact, no protocol that guarantees that both sides definitely and
unambiguously know that the RPC is over in the face of a lossy network.” Tanenbaum
and Renesse (1987)

45

Homework
1) Look at Robert Kubis slides on http2, protocol
buffers and GRPC
http://de.slideshare.net/AboutYouGmbH/robert-kubis-
grpc-boilerplate-to-highperformance-scalable-apis-
codetalks-2015
2) download GRPC Java examples from
http://www.grpc.io/docs/
Read the getting started guide and start compiling the
examples.
3) Run server and client and test the runtime.
4) Define your own interface and generate the server
and client side

46

Resources

• John Bloomer, Power Programming with RPC
• John R.Corbin, The Art of Distributed Applications. Programming Techniques for

Remote Procedure Calls
• Ward Rosenberry, Jim Teague, Distributing Applications across DCE and Windows NT
• Mark Slee, Aditya Agarwal and Marc Kwiatkowski, Thrift: Scalable Cross-Language

Services Implementation
• Thomas Bayer, Protocol Buffers, Etch, Hadoop und Thrift im Vergleich
• Andrew Prunicki, Apache Thrift
• Google Protocol Buffers, https://developers.google.com/protocol-buffers/docs/tutorials
• GRPC getting started: http://www.grpc.io/docs/
• GRPC Java examples: https://github.com/grpc/grpc-java/tree/master/examples
• M. Kleppmann, Designing Data-Intensive Applications, Oreilly Pub.
• M.Kleppmann,

https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-t
hrift.html

• Tyler Treat, Thrift on Steroids: A Tale of Scale and Abstraction,
http://bravenewgeek.com/thrift-on-steroids-a-tale-of-scale-and-abstraction/

https://developers.google.com/protocol-buffers/docs/tutorials
http://www.grpc.io/docs/
https://github.com/grpc/grpc-java/tree/master/examples
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

