

Security in Distributed Systems Part One

Distributed Attack Vectors and Security Technology

Distributed Security is easy….

In a way one could say that distributed security is easy: find all
places where TRUST is assumed and control/fix them.

But you must keep systems workable, stay within costs, account
for user’s weaknesses etc.

At the core of distributed security there is always TRUST and
the way it is established, verified and maintained through
systems of independently interacting agents.

Overview

• Threats and Attacks due to Distribution

• Crypto Basics and Building Blocks

• Security Mantras: Authentication, Authorization, Integrity,
Confidentiality, Non-Repudiation

• Security Mechanisms and Protocols, Channel- and Object-
Security

Next session:

• Security Architectures, Middleware and Infrastructure

• Delegation concepts

Distributed Systems Security Threats

• Interception (eavesdropping)
• Interruption (denial of service)
• Modification (illegal data change)
• Fabrication (replay attacks)
• Destruction (sabotage)
--
• Hostile Clients
• Attacks on Clients (indirect attacks)
--
• Internal Attacks

The “remoteness” causes problems during transit but also
difficulties in trust relationships and through the number of
involved parties (abilities etc.)

Ways to attack

• Company internal attacks

• Password cracking

• Encryption cracking

• Denial of service

• Replay attacks

• Man in the middle

• Planting viruses (trojan horses)

• Masquerading

• Exploiting software bugs

• Social engineering

• Semantic Attacks

Where to attack (1) ?

“82 % of all identified frauds were committed by employees,
almost of third of which were by management. Nearly half
had been with the organization for more than five years and
almost a quarter for more then ten years.”

Source: Ernst&Young Fraud Investigation Group, Report
2000.

It’s not “Only the Intranet” even though you hear this all the
time within companies. For a security architecture of an
Intranet: Frederick Thomas Martin, Top Secret Intranet – How
US Intelligence built Intelink – The worlds largest most secure
network. BUT: IS THIS REALLY TRUE? Where do the
numbers come from?

Company internal attacks

•Best knowledge of
procedures and infrastructure

•Best knowledge of the value
of items

•Legal access to information

•Easy mobile storage

•Wireless access

•Know what you need principle

•Role based access control

•Strong authentication

•No clear-text passwords over the
wire

•Clear-desk policy

•4-eyes principle

•Secret service

•Permanent encryption of important
information

While attacks from outside hackers always win a lot of attention, the real threats
come from inside. Most companies do realize this fact but act differently (e.g.
“it’s ONLY for the intRAnet”)

Employed hackers company

External attacks

PC with
unreliable OS
and User

Hardened OS and
Application.
Experienced
administrators

Going after the company host is much harder than attacking a companies clients
at their weakly secured home computers. The advantage of hacking into a
company host is that many clients could be affected all at once.

Companies clients

The problem of passwords (1)

Scan
attack

Storage attack

Unintentional
wrong PW use

Virus attack

Masquerading as
you

Social engineering
attack

The core problem is that your secret is known by others. This make the safety of your
secret (your IDENTITY) dependent on network, hosts, partners etc. To make things
worse, because PW’s should be long and complicated they are hard to remember. People
tend to re-use them (PW synchronization) or to pick very simple ones (PW-
simplification). Still, the basic problem is the fundamental exposure of your secret! That
makes them fairly low risk for you actually – because everybody knows that a user-
id/password combination is not safe and does NOT necessarily identify YOU.

Internal security
breach

Memory attack

PW

PW

PW

PW

PW

PW

PW PW

The problem of passwords (2)

Same password re-
used
(synchronization)

Simple password
(simplification)

Besides shipping and exposing your password on every use the whole mechanism does
not scale as well! With every new participant in a distributed system ALL participants
would have to invent a new password (no re-use or synchronization) of sufficient quality
(no simplification). This is a system administration nightmare (is there a sys admin at
all?)

PW

PW

Cracking ciphers

tap

Key length and encryption technology determine the ease of cracking your cipher. Given
enough time every encryption can be cracked. To determine the appropriate technique
you need to consider: If one message is cracked, does it mean ALL previous messages
can now be read too? How bad is that for you? If you find you (or guess) that you key
has been broken – can you revoke it quickly? How will you partners find out about the
broken key? Your distributed system has a HISTORY!

Encrypted
message (e.g
DES)

NSA realtime
number-cruncher

Distributed Denial-Of-Service Attacks

Command channel

Remote control virus

Distribution channel

Attack channel

Little can be done against distributed DOS. Especially easy are attacks on
session holding services. Why? Because of the peer-to-peer structure of the
internet? The problem of service abuse in P2P settings is a hard one to solve.
Read at www.grc.com about DDOS.

Man-In-The-Middle (Proxy?) Attacks

client

Hacked DNS server,
says: real servers IP =
MITM’s IP

The MITM can either only
screen all C/S communication
or even manipulate it (e.g.
increase payments or orders)

MITM attacks are not so uncommon. Even large banks were
already attacked. How do you find out that somebody is playing a
MITM attack? Strong authentication and signed requests (with
nonces) fight those attacks efficiently. Does multi-factor
authentication work?

MITM Real server

Client gets
wrong IP

MITM looks like
real server to client

MITM looks like
client to real server

Planting Viruses and exploiting SW bugs
A top target: a big
server, hard to plant
the virus but THEN a
lot of clients can be
infected! And the
modern virus is a
remote-control device!

Another top target:

The typical small windows
box. Open and unprotected
but NOW connected via DSL
or CABLE modem – high
bandwidth, permanent
connectivity!

The platform threat model has become a core part of distributed system
security. We can no longer assume uncompromised or non-malicious partners.

Masquerading/Impersonating?

Mail from:
walter.kriha.de

Subject:xxxxx

Nslookup foo.bar.de

192.68.100.10

How do you know
the mail is really
from me?

How do you know
the IP address is
correct?

Virtually every form of identity on the internet can be spoofed and used for
masquerading attacks. Somebody else is impersonating you or one of your
partners. IP addresses can be faked easily and should not be used for security
purposes. Use a program like PrettyGoodPrivacy (PGP) to get mail which is
authentic, private and integer

Social Engineering
Hi, this is John from IT-Security.
Your last password change did
not work, you have a percent

character in there now!

So you say you did not?
According to my files it is

wrong.

So you say you definitely
changed it to FOO without a
percent character? OK, I will
check this again and let you

know

Social engineering is an extremely easy and powerful way to break security. It
works best in a REMOTE environment which reduces the chances of a victim
to VERIFY statements and identities! Surprise factors further decrease
verification options. Trust chains lead to skipped verification of identities.

Crypto-Basics and Building Blocks

• The crypto community: Open Source forever!

• Symmetric keys

• Asymmetric (Public) Keys

• One-way hash codes

• Digital signatures

• Steganography

Principles of the crypto community

• An algorithm must be available in source (Implementation)

• An algorithm must be secure even if attackers know how it works

• An algorithm must be secure even if the input text and the associated
cypher text are known (brute force attack) and can be chosen at will.

• The strength of an encryption algorithm must be in the length of its
key.

As a system architect:

-DO NOT WRITE YOUR OWN CRYPTO FUNCTIONS

-USE OFFICIAL AND STABLE ALGORITHMS

-CHECK REGULARLY FOR CHANGES (MD5 e.g.)

-BE REALISTIC: CRACKED CRYPTO IS THE LEAST OF
YOUR WORRIES!

Terminology

From van Steen, Tanenbaum

Symmetric Keys (are like passwords)

Sender Receiver

Plaintext: IBM

Ciphertext: HAL

Plaintext: IBM

Key: 1 (Ek == Dk)

There is only one shared key used between sender and receiver. The main
problem of symmetric keys in distributed environments are:

-key transport across public networks

-Key maintenance

-Number of keys increases with multiple partners

- trusted and well known partners required

- no support for non-repudiation

It is NOT true that symmetric keys are weaker than e.g. asymmetric keys!

Use of Symmetric Keys in distributed systems

Sender Receiver
Calculation of
symmetric session key

Data transmission using
symmetric session key

Computationally asymmetric keys are 1000-10000 times more expensive than
symmetric keys. For this reason many protocols establish a secure session
context using asymmetric keys and use symmetric keys for data transmission
(e.g. SSL sessions). Popular symmetric algorithms are: DES, Triple DES,
IDEA and the new AES: Rijndael.

Embedded control devices which support asymmetric key algorithms are still
quite expensive on a mass distribution scale.

Authentication and
encryption using
asysmmetric keys

Asymmetric Keys : Encryption use

Pk of B
(published) Sk of B

PkB(plaintext)

Asymmetric keys are a pair of keys where one stays private (secret) while the
other one is made public. To encrypt a message so that ONLY the receiver can
read it, the sender uses the PUBLIC key of the receiver. Note that the sender
can no longer read the message after encryption with the receivers PUBLIC
key! (lost key problem in companies). Popular algorithms are RSA and DSA.

A B

Plaintext SkB(PkB(Plaintext)) == Plaintext

Asymmetric Keys : Signature use

Pk of A
(published)Sk of A

SkA(plaintext)

If a sender uses HER SECRET key to encrypt a plaintext, EVERYBODY who
has the PUBLIC key of the sender can decrypt the message (no privacy). But
everybody will know that ONLY the sender could have encrypted the message
because otherwise the senders public key couldn’t de-crypt the message
successfully. This identifies the SENDER.

A B

Plaintext

PkA(SkA(Plaintext)) == Plaintext

One Way Hash-Codes (digital fingerprints)

Order for 2000
shares of
company X at a
value of $25
each.

Plaintext:

One-way
 hash 17AB86VS9754G2HERT6

Fixed length
output:

A one way hash function creates a fixed length representation of the input
(with padding if necessary). The function guarantees that it is
computationally infeasible to reverse the process and that no two different
inputs will create the same output. A change in the input will cause a
completely different output. This can be used to detect TAMPERING during
message transfer. Popular one-way hash algorithms are Message Disgest 5
(MD5) and Secure Hash Algorithm 1 (SHA1)

Digital Signatures

Pk of A
(published)Sk of A

Order for 2000 shares of company ...

The sender creates a digital fingerprint of the plaintext, encrypts it with her
secret key and sends it – together with the un-encrypted plaintext to the
receiver. The receiver performs THE SAME hash-calculation as the sender on
the plain text. The receiver also unpacks the encrypted fingerprint and then
compares the two hash values: If they are identical the receiver knows that a)
the plaintext is from the sender and b) it has not been tampered during transit.
Additionally the plaintext could have been encrypted as well to preserve
privacy.

A B

17AB86VS9754G2HERT6PkA(SkA(hashed Value)) ==
hashed value

Order for 2000
shares of
company X at a
value of $25
each.

One-way
 hash 17AB86VS9754G2HERT6

One-way
 hash 17AB86VS9754G2HERT6

SkA(hashed Value)
compare

The big advantage of public key encryption
in distributed environments

•The receiver does NOT get your secret key and can
therefore NOT impersonate you or modify your messages
etc.

•Distribution of public keys over public networks is not a
big problem (see certificates later)

There are some disadvantages as well: a lost secret private key means
that messages cannot be decrypted anymore. This is a problem for
companies that need to keep records and histories. Also if an employee
gets sick, a substitute cannot read her received messages without her
secret key. Workarounds like key escrow (the secret key is stored in
some repository) of course decrease security by introducing trust. And
the increased trust that people put into this technology may be a mixed
blessing. What if keys are compromised?

Cryptographic attacks

• Brute force: try every possible key for a given encryption
algorithm. An algorithm is good if ONLY a brute force
attack will crack it. A special form of attack is a „distributed
brute force“ attack which involves large numbers of
computers, e.g. on the internet

• Known [plaintext|cyphertext], chosen [plaintext|cyphertext]

• Finding a backdoor for an algorithm through mathematical
analysis

• Exploiting weaknesses in random number generation used
for an implementation (e.g. the numbers are somehow
predictable)

Steganography: invisible ink of the digital
time

This is a secret message

54 68 69 73 20 69 73 20 61
20 73 65 63 72 65 74 20 6d
65 73 73 61 67 65 0d 0a

01010100 01101000 01101001

10110001

01010011

10001110

R

B

G

10110000

01010010

10001111

R

B

G

Least Significant Bit encoding hides a message in the LSB of an image. The
image needs to have a certain variability. Additionally, the message can be
encrypted. Changes in the LSB of a true color image are not noticeable for the
human eye. But computers can detect „unusual“ bit frequencies

The Distributed IT-Security Mantras

• Authentication (Who is it?)
• Authorization (What can she do?)
• Integrity (Is the message un-changed?)
• Confidentiality (Can somebody else than the receiver read

the message?)
• Non-Repudiation (The proof that somebody did send a

message, e.g. an order)

These goals are clearly directed towards the operation of IT
within corporations or governments. Compare this to the civil
rights oriented security mantra.

Authentication: Verifying an Identity

By:

1. What you know (passwords, PIN’s)

2. What you have (cards, tokens)

3. What you can do (private key for encryption)

4. What you ARE (fingerprints, iris-pattern, blood-test, face recognition
etc.)

A combination of technologies is often more secure than the use
of a single mechanism – except if given to a MIM. (multi-factor
authentication). Ask yourself: why do I want to authenticate
somebody/something?

Authentication levels and Strength

UID
Password

UID
Password

Scratchlist
(dynamic secret)

Public Key
based

Authentication
With client and

Server
certificates

Strong authentication

Weak
authentication

Please note that the use of SSL in the UID/PW case does not improve the
authentication level. The authentication level typically decides about what a client
is allowed to see or access. Some systems provide a dynamic step up if a client
wants to access some resource which requires a higher level. This is not easy
implement correctly in software.

(Partial) Solution to the PW-distribution
Problem: Needham-Schroeder Authentication

Protocol

ClientA ClientB

Key Distribution Server

KA

KA

KB

KB
Give me (A) a key
for
communicating
with B, nonce X

Your Key + ticket (KAB key
encrypted with KB) ,nonce
X. All encrypted with KA

Ticket, Nonce y

B decrypts Ticket and uses
common key KAB to
encrpyt new nonce Z

Nonce Z, encrypted with KAB

Nonce Z‘ encrypted with KAB
to prove A‘s identity to B

This protocol is used e.g. in Microsoft‘s Kerberos implementation. It requires a
secure authentication server which knows the symmetric keys of all principals. A
nonce is a request counter that is used to fend off replay attacks. A ticket contains a
common key (KAB) and a partner name, both encrypted with the receivers secret
key. Note that the secret keys of A or B (or passwords) do NOT go over the wire

No more distributed secrets: Public Keys
and Certificates (X.509)

Version V3

Serial Number 1234 5678 ..

Signature Algorithm sha1RSA

Issuer Verisign

Valid From 1.1.2000

Valid To 1.1.2001

Subject Walter Kriha

walter@kriha.de
11.07.1958

Private Individual,..

Public Key #12345ABCDEF123

Signature of CA 12EF72A1C590BE..

A certificate associates a subject with a public key. To prevent man-in-the-
middle attacks, a sender MUST know the receivers public key to encrypt the
messages. Extension fields specify e.g. the usage of the certificate, ist
revocation location etc. Certificates are a distributed solution for the lack of a
common identity server.

Centralized Generation of Certificates:
Certificate Authorities (CA)

CAPerson A

Sk Pk
Passport of person A,
money and public key of A
encrypted with PK of CA

Check identity of A. Sign
certificate including A‘s
public key with CA‘s
Secret key

Cert A

A certificate authority guarantees that client A has public key X for a price.
Obviously the price dictates how carefully the CA checks the persons identity. A
compromised key of a CA would be VERY serious. A person can now publish
this certificate and receive private mail from senders using her public key from
the certificate. Why do you trust a CA?

Distributed Generation of Certificates:
Certificate Chains

Friend B

Person A

Sk

Self-made certificate

Friend signs Person A‘s
certificate

The more people sign person A‘s certificate the higher the likelyhood that a
receiver of A‘s certificate will recognize one of the signers as a trusted instance
and accept the certificate. Thereby a chain of trust is created. Pretty Good
Privacy (PGP), a public domain program for secure messaging works this way.
(see Dan Zimmerman‘s PGP book, O‘Reilly etc.)

Name: A

Public Key: 1232AD3F...

Bank

Bank signs Person A‘s
certificateSignature bank

Signature friend

Certificate Revocation

CA

Sender A
A sends her certificate to B

After checking the lifetime
of A‘s certificate, B checks
if it has been revoked.

Cert A

The Open Certificate Status Protocol allows the checking of certificates by the
receiver. Reasons for the revocation are given in a revocation message, e.g.
private key compromised, content changed or CA compromised.

Receiver B

OCSP message

(Distributed) Authorization Methods

- Role Based Access
Control
- XACML Decision
Framework
- Federated Authorization
(Oauth)
- ACLs
- Capabilities

Authorization by RBAC

Role based access control is now a standard feature in controlled environments
(like companies). A good authorization model allows for “Service Management
delegation” in order to let organizational groups maintain their own rights system
for their own resources. Resources should never know about users. Sometimes
type based authorization is not enough and a rule uses instance qualities to
restrict access. These qualities can still be checked externally of resources if the
resources provide the necessary interfaces. Without flexible authorization
organizations cannot change their structure.

Users Roles

Kriha admin

Roles Rights

admin createResource

Rights Object

create table

Roles:

•Admin

•UserAdmin

Rights:

•createResource

•addRole

Object and rights

•Table: create,
delete..

•Role: add, delete,
modify

Users:

•Kriha

XACML Auth. Decision Framework

From: National Cancer Institute

Federated Authorization (OAuth)

From Tom Trenka,sitepen.com

Access Control Lists (ACL)

requester resource
Requester, Read request
for resource

Resource checks if type of
request is in resources access
control list for requester

ACL:

Requester: read, delete,..

Access Control Lists are easy to implement and are very popular today. Both
Unix and NT use them. They do not scale very well in case of very large
numbers of principals. The OS390 implementation of DCE uses capabilities
instead.

Capabilities

requester resource

Requester can do:

- Read resource

- Delete resource
etc.

Read request for resource

Resource checks if type of
request is in requesters
capabilities

Signed capability

Capabilities work like keys: if you have a key you can open a lock. Capabilities
scale well in most environments but have the problem of „lost keys“: they need
to be protected from replay attacks and stolen capabilities. And what happens if
the rights of an owner change (e.g. by moving to a different department)?
Capabilities need to expire automatically. Delegation is easily implemented
using Capabilities.

Channel- vs. Object-based Security

Non- repudiation
SSL-channels and architecture
Secure Mail

Non-Repudiation: “It was not me who
did…”

Proof
Token

Adjudicator

Banking Transaction (e.g
money transfer)

Proof Token

Client

Here a mediator (adjudicator) sends a proof token for the transaction to both parties. In
banks legally binding procedures have to be certified through the banking commission –
if your procedures do not comply you can’t work as a bank.

Non-repudiation is based on digital signatures in addition to extensive auditing of all
communication flow. The auditing may create a security problem by itself because
important and confidential data is collected and recorded. Who is allowed to see the
audit trail data?

E-Banking

T

T

T

Channel based vs. Object based Security

Information Information

ssl-channel

integrity/confidentiality author?

Information

Digital
Signature

encrypted

Information

Digital
Signature

encrypted

Sender Receiver

SSL Handshake (Server Cert. Only)
client server

SSL Version, Cipher suite, compression, Random Data („client-hello“)

Agreement („Server-hello“)

Server certificate („ServerHelloDone“)

Client Certificate request (optional, if server needs to establish client authenticity)

Send Client certificate to server

Verify client certificate to server (use random number from beginning)

Change cipher spec, Pre-master key, (Next message is encrypted)

Change cipher spec (Next message is encrypted)

Finished (encrypted with session key)

Finished (encrypted with session key)Master
Secret

Master
Secret

Client/Server hello and certificate exchange are in plain. Pre-master
exchange uses servers public key. A master secret is derived from
pre-master key. The master secret is used to generate the session key.
The finished messages are already encrypted with the session key

SSL Dangers

• Certificates of Certificate Authorities need to be transported to the client over a
secure channel (pre-installed etc.) Other wise man-in-the-middle attacks are possible.
The domain name of the server should be included in the certificate

• Participants need to be sure about what NAMES in a certificate really MEAN

• Danger lies in the fallback and protocol negotiation features of SSL. A bank server
e.g. needs to enforce 128 bit encryption with trusted algorithms and cancel the
connection if the client tries to fall back to something less secure

• As always: the implementation e.g. the random number generation may be flawed.

PKI suffers from some basic problems like non-existing
global names, various Certificate Authorities and key
management problems. SSL does NOT create non-repudiation

Object-based Security: S/MIME

From: walter@kriha.de

Subject: Test

Content Type: multipart/signed;protocol=„application/pkcs7-signature“;
micalg=sha1; boundary=boundaryXYZ

--boundaryXYZ

Content-Type: text/plain

(plain-text message)

--boundaryXYZ

Content-Type: application/pkcs7-signature

Content-Transfer-Encoding: base64

(signature)

--boundaryXYZ

S/MIME allows secure e-mail over the store-and-forward architecture of SMTP. Note that
the first FROM/SUBJECT items are in plain text. Mail partner discover S/MIME
capabilities of each other through mail sent between them. S/MIME supports
intermediaries (relays etc.) perfectly.

The end-to-end argument

„Any communications system involves
intermediaries, such as network devices, computers
and programs which are unarware of the total
context of the communication being involved.
These intermediaries are therefore incapable of
ensuring that the data is processed correctly“
(Voydock 1983)

The original end-to-end argument can be found in Salter,Reed and Clark 1984). IPSec,
SSL and S/MIME work on different levels with the ones closer to the application deal
better with proxies etc.

End-to-End security (top-down)

user

datalink

network

application

middleware

OS services

Transport

physical

user

datalink

network

application

middleware

OS services

Transport

physical

Security can be implemented on many layers. The deeper the layer the more
TRUST is needed in the upper layers. End to end means that the specific layer
can control the security to the receiving layer, e.g. by handing only encrypted
content to the next lower layer.

Hardware encrypted wire
and authenticated hosts

Secure Socket Layer

GSSAPI

Resources (1)

• Van Steen/Tanenbaum, Chapter 8

• Studie “Gesicherte Verbindung von Computernetzen mit Hilfe einer
Firewall”, Andreas Bonnard, Christian Wolff, Siemens AG (für
Bundesamt für Sicherheit in der Informationstechnik BSI)

• Internet Cryptography, Richard E. Smith, www.visi.com/crypto

• WWW Security FAQ, www.w3.org/Faq (with short bibliography)

• Cryptography FAQ, www.faqs.org/cryptography-faq

• RISKS, Forum on Risks to the Public in Computers and Related
Systems http://catless.ncl.ac.uk/Risks (real life stories on the social
and political consequences of security flaws

Resources (2)

• The EU commissions report on the US/UK Spy project Echelon –
How the US and UK do industrial espionage against Europe.

• Simson/Garfinkel, Database Nation
• Bruce Schneier, Applied Cryptography (the bible of cryptography).

Surprisingly good to read and understand!
• Bruce Schneier et.al., Practical Cryptography – even better for

software developers. Explains problems of PKI very well.
• Diffie et.al., Privacy on the line (explains why encryption is a civil

right that organizations like the NSA try to subvert) (Yes, THAT Diffie
from Diffie-Hellman Key exchange)

• www.cert.org , your most important source for information on new
security breaches etc. Register for the newsletter! Also an excellent
source on security technology

• Frederick Thomas Martin, Top Secret Intranet – How US Intelligence
built Intelink – The worlds largest most secure network. Good to read.

Resources (3)

• Improving the Security of Your Site by Breaking Into it:

http://www.fish.com/~zen/satan/admin-guide-to-cracking.html

A good introduction into cracking systems. Fun reading too.

• The strange tale of the denial of service attacks against grc.com, Steve
Gibson, 2001. The power of distributed DOS attacks. (www.grc.com)
Really funny to read!

• Introduction to SSL,
www.developer.netscape.com/docs/manuals/security/sslin/contents.ht
ml

• Coulouris et.al., Section 7. Contains a good explanation of kerberos
ticket mechanisms. (Used in OSF/DCE and Microsoft products)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

