
Services

Distribution paradigm between hype and
revolution

Walter Kriha

3

https://twitter.com/swardley/status/952180307540824065
No kidding: think about model-driven architecture becoming no-
code/low-code...

https://twitter.com/swardley/status/952180307540824065

4

Overview

• Standing on the shoulders of giants

– CORBA

– WebServices

– SOA

• REST
• MicroServices and Conway’s Law
• NanoServices (aka Serverless Computing)

5

Goals

Understand the “service idea” in distributed systems and its history

See how organization and technology need to be aligned

See how different approaches deal with cross-cutting concerns like transactions,
security and delivery guarantees

Tr to understand how “services” and the “layer” architectural design pattern mix.

Try to understand the conflicting goals behind SOA: loose coupling, re-use, short
round-trip times, general services vs. Special needs of applications,
transactions, different granularity, workflow composition from services and
the problems of context and concerns.

Right now it looks like the service idea has “won”. Heavyweight containers
like JEE/.NET demonstrated scalability problems.

6

Timeline of Distributed Service Architectures

1992 1998 2004 20162010

CORBA

WebServices

SOA

MicroServices

NanoServices

DCE

Unix RPC

RPC in
Intranet REST in

Intranet,
RPC in
Data Center

7

Common Request Broker Architecture
(CORBA)

8

CORBA Services

http://www.omg.org/spec/index.htm

9

Object Request Broker Architecture

from van Steen, Tanenbaum, Distributed Systems. For protocols etc.: Common Object
Request Broker Architecture: Core Specification, http://www.omg.org/cgi-bin/doc?
formal/04-03-12.pdf

10

Security: Secure Delegation Concept
CORBA CSIv2 Mechanism

Client
Inter

mediate

Target

App.

Server

TTP

SSL 1

Tokens

Authorization Token of C
(PAC)

Authorization Token of I

Identity Token of C

Identity Credentials or

Token of I

security context

Tokens

SSl 2 (mutual)

Every system involved authenticates itself against other tiers and
flows client tokens. No secrets are shared. Defined routes prevent
token abuse. Later tiers can verify original requestor and route.

11

Transaction Service

Object Transaction Service
from CORBA

12

CORBA Example

(Modified) from:
http://docs.oracle.com/javase/7/docs/technotes/gui
des/idl/jidlExample.html

Hello.idl

module HelloApp
{
 interface Hello
 {
 string sayHello();
 oneway void shutdown();
 };
};

// HelloServer.java
import org.omg.*;

class HelloImpl extends HelloPOA {
 private ORB orb;
 public void setORB(ORB orb_val)
{
 orb = orb_val;
 }

 // implement sayHello() method
 public String sayHello() {
 return "\nHello world !!\n";
 }

 // implement shutdown() method
 public void shutdown() {
 orb.shutdown(false);
 }}

public class HelloServer {
 public static void main(String args[]) {
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);
 // get reference to rootpoa & activate the
POAManager
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA")
);
 rootpoa.the_POAManager().activate();
 // create servant and register it with the ORB
 HelloImpl helloImpl = new HelloImpl();
 helloImpl.setORB(orb);
 // get object reference from the servant
 org.omg.CORBA.Object ref =
rootpoa.servant_to_reference(helloImpl);
 Hello href = HelloHelper.narrow(ref);

 // get the root naming context
 // NameService invokes the name service
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 // Use NamingContextExt which is part of the
Interoperable
 // Naming Service (INS) specification.
 NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);
 // bind the Object Reference in Naming
 String name = "Hello";
 NameComponent path[] = ncRef.to_name(name);
 ncRef.rebind(path, href);
 System.out.println("HelloServer ready and
waiting ...");
 // wait for invocations from clients
 orb.run();
 } }}

public class HelloClient {
 static Hello helloImpl;
 public static void main(String args[])
 { // create and initialize the ORB
 ORB orb = ORB.init(args, null);
 // get the root naming context
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 // Use NamingContextExt instead of NamingContext. This is
 // part of the Interoperable naming Service.
 NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);

 // resolve the Object Reference in Naming
 String name = "Hello";
 helloImpl = HelloHelper.narrow(ncRef.resolve_str(name));
 System.out.println("Obtained a handle on server object: "
+ helloImpl);
 System.out.println(helloImpl.sayHello());
 helloImpl.shutdown();

 }}

13

CORBA Core Properties

● Clearly an INTRANET technology

● Language independent with a focus on interface definitions

● Base protocol defined for interoperability and cross-cutting concerns (IIOP)

● Delivery guarantees provided by base protocol

● Mostly used to connect heterogeneous (legacy) software in large corporations

● Difficult and tedious standardization process

● Lots of “boilerplate code” leading to extensive code generation and model-driven
development

● Java 9 will no longer include CORBA in the default classpath

Michi Henning, The Rise and Fall of CORBA, ACM
http://cacm.acm.org/magazines/2008/8/5336-the-rise-and-fall-of-corba/fulltext

http://cacm.acm.org/magazines/2008/8/5336-the-rise-and-fall-of-corba/fulltext

14

WebServices

The following is only a small part of a much larger course on
webservices, ws-security, canonical XML, encrypted XML etc.

15

What are Web Services?

„A Web service is a software component that represents a
business function (or a business service) and can be accessed
by another application (a client, a server or another Web
service) over public networks using generally available
ubiquitous protocols and transports (i.e. SOAP over http)“.
(http://www3.gartner.com/Init by M.Pezzini, April 2001)

16

WWW: from GUI driven to B2B

stock
server

myYahoo

 <FORM action="http://stockservice.com/getquote" method="post">

 <P><LABEL for=valor">valor: </LABEL>

 <INPUT type="text" id=„valor">

<INPUT type="submit" value="Send"> </FORM>

 stockservice: valor=IBM

 html document with IBM=44.56

<xml-rpc><service>stockservice</
service><request>getquote><parameter><name>valor</
name><value>IBM</value></parameter></request></xml-rpc>

<xml-rpc><service>stockservice</
service><response>getquote><parameter><name>IBM</
name><value>44.56</value></parameter></response></xml-rpc>

The concept of a web service is extremely simple: use XML to create requests and
responses and send them using http. This allows machines to communicate with each
others, e.g. to perform supply chain management or other business to business processing.
XML-RPC by David Winer (userland.com) was one of the earliest standard proposals.
Companies have used this technology internally for quite a while.

17

Web Services Components

Transport layer: http(s), smtp, httpr

Universal Description, Discovery, Integration UDDI (XML)

Web Service Description Language WSDL (XML)

Request format: SOAP (XML)

Digital Signatures Transactions Metering

single sign on services:
Hailstorm/liberty
alliance

global registry (UDDI)

XML is the standard format used in Web Services. On top of standard transport
mechanisms are requests formatted using the SOAP XML schema. Clients learn
about service providers by browsing the UDDI registry. Services are described in
a special description language, again a XML schema.

18

Web Services Core Properties

- „simple“ requests

- Over public networks/Internet

- Using http transport for firewall reasons (Delivery guarantees?)

- XML message format (language independent)

- Added features for reliability, security and transactions

- In many cases a re-write of CORBA interfaces with XML syntax

- Expressing a business function

Massively overhyped WebServices postulated automatic
interoperability based on self-describing services and ontologies.
The technical base was provided by forms of XML-RPC. SOAP
had nothing to do with distributed objects in spite of the name!

19

„Service Oriented“ Architecture

requester provider

UDDI
registry

look for service in
UDDI registry retrieve provider

location and WSDL
service description

publish services in
registry

create request from
WSDL description

bind and send request via
SOAP/http or other
transport to provider

This type of architecture is called „service-oriented“. It uses a broker for
service advertisement and lookup. Requester and provider bind dynamically
with respect to transport (http, smtp etc.) (Raghavan N. Srinivas, Web services
hits the Java scene part 1, http://www.javaworld.com)

20

Service Discovery: UDDI

UDDI registry with find and publish API

White pages:

information
about
companies (loc.,
contact etc.)

Yellow pages:

business
categorization,
type and
industry

Green pages:

meta
information
about services
and their
qualities

most distributed services use some kind of central registry for service lookup.
The Universal Description, Discovery and Integration registry plays this role in
web services. Especially the green pages property has led some people to
proclaim automatic service matching by service requesters browsing the meta-
information contained there. For the difficulties behind ontologies and
automated discovery see: Steve Vinoski, Web Services and Dynamic Discovery
on webservices.org

21

Service Discovery (2): UDDI content

<businessEntity>name,
contact, location etc.

<businessService>

<bindingTemplate
>

<tModel>meta

info on service
specification of

a service

All content in UDDI is expressed in XML. Besides the obvious elements for
companies and services a number of meta-information elements like tModel exist.
A core feature of UDDI is the expectation that requester and provider do a
dynamic bind where they agree on service and transport characteristics. A local
registry can be downloaded from www.alphaworks.ibm.com

22

WSDL: The IDL of Web Services
<?xml version="1.0"?> <definitions name="StockQuote"

 <schena targetNamespace=http://example.com/stockquote.wsdl [...]

 <types><schema targetNamespace="http://example.com/stockquote.xsd" [...]

<element name="TradePriceRequest">

 <complexType> <all> <element name="tickerSymbol" type="string"/> </all> </complexType>

 </element></schema> </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/></message>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/> </operation> </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

 [..] <operation name="GetLastTradePrice"> [..] </binding>

 <service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort" binding="tns:StockQuoteBinding">

 <soap:address location="http://example.com/stockquote"/> </port> </service> </definitions>

Web Services Description Language (WSDL) is the metadata language of Web Services. It defines how service providers and requesters
understand Web Services. When exposing back-ends as Web Services, WSDL defines and exposes components and lists all the data
types, operations, and parameters used by that service. WSDL provides all the information that a client application needs to build a valid
SOAP invocation that in turn is mapped by the Web Services platform onto back-end enterprise logic. (after P.J.Murray, Web Services
and CORBA, CapeClear)

23

WSDL Elements

•Types– a container for data type definitions using some type system (such as
XSD).

•Message– an abstract, typed definition of the data being communicated.

•Operation– an abstract description of an action supported by the service.

•Port Type–an abstract set of operations supported by one or more endpoints.

•Binding– a concrete protocol and data format specification for a particular
port type.

•Port– a single endpoint defined as a combination of a binding and a network
address.

•Service– a collection of related endpoints.

A WSDL document defines services as collections of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of abstract
definitions: messages, which are abstract descriptions of the data being exchanged, and
port types which are abstract collections of operations. The concrete protocol and data
format specifications for a particular port type constitutes a reusable binding.

24

<s:Envelope

xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <s:Body>

 <m:sayHello xmlns:m='urn:Example1'>

 <name xsi:type='xsd:string'>James</name>

 </m:sayHello>

 </s:Body>

 </s:Envelope>

Request Format of Web Services: SOAP

<s:Envelope

xmlns:s="http://www.w3.org/2001/06/soap-envelope"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-
instance"xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <s:Body>

 <n:sayHelloResponse xmlns:n="urn:Example1">

 <return xsi:type="xsd:string">

 Hello James

 </return>

 </n:sayHelloResponse>

 </s:Body>

 </s:Envelope>

hello-request hello-response

SOAP is essentially an RPC protocol with XML. It provides elements for type
marshalling and RPC semantics. A header element contains meta-information
but is optional. See Snell et.al. Programming Web Services... for details. Find a
complete SOAP implementation at apache.org

25

SOAP: performance aspects

XML stream

Object to XML
conversion

XML Parsing and
construction of objectstransport of XML

stream over http
XML stream

The only way to find an answer on possible performance problems is to measure the
effect of individual processing steps or transport times on the overall request time. It
became clear that the internet transport time with lacking QOS has far greater effects on
overall request time than the size and interpretation effort of a textual format. In other
words: it is NOT the XML that is problematic, it is the public network (Internet) that
takes a toll on request/response protocols. (watch Amdahls law in action)

marshaling
time

Internet
transport

time

effect of
size on

transport

de-
marshaling

time

26

Web Services and Firewalls

CORBA
port

http
port

RMI
port Object

server
Web server

Web Service
Application
Server

SOAP request

Firewall

SOAP request

SOAP request

The firewall „friendliness“ of Web Services has been touted all along. But
firewalls were introduced for a reason: to block protocolls that cannot be tracked
and filtered properly – perhaps because the necessary infrastructure was never
developed – perhaps because the protocols were not intended for the Internet like
CORBA and RMI. But Web Services make no sense without such an
infrastructure.

27

Common Business Processes: ebXML

Standard Purchase
Business Process
Specification:

•Operations

•Parameters

•Flow

ebXML registry

company A

company B

retrieve specification

register own purchase service

implement purchase process
according to specification

use company A‘s purchase
service

find service from company A

Without standard schemas for services every company will implement their
business processes differently. Clients will have to deal with many different
interfaces for the same type of service. ebXML is a global electronic business
standard and defines a framework for defining, finding and using standard
business process services. see www.oasis-open.org

28

Web Services Security Standards and
Technologies

• SOAP, WSDL, UDDI: Message Envelope,
Interfaces Definition and Registry

• WS-Security: Secure Messaging
Definitions

• WS-Trust: How to get Security Tokens
(issuing, validation etc.)

• WS-Federation (How to make security
interoperable between trust domains)

WS-Security is the foundation of Web Services Security. We will take a close look at this
specification and WS-Trust. Soap and WSDL are basic Web Services standards for
messaging. If you are not familiar with them, you can find an introduction here:
http://www.kriha.de/krihaorg/docs/lectures/distributedsystems/webservices/
webservices.html. For a list of all Web Services standards go to:
www.webservicessummit.com) Please NOTE: few of those standards are
available in implementations. E.g. Web Services Enhancement 2.0 from Microsoft
covers only basic Web Services security features.

• WS-Policy (How to express security
requirements)

• Secure AssociationsMarkup Language (a
language to express security related
statements)

• WS-Reli (Rights management)

• WS-Util (Helper elements)

• WS-Authorization (express access
rights)

29

Reliable Messaging

requester receiver

SOAP msg. with message ID,
sequence number and QOS tag

request and ack.

Reliable B2B messages need guaranteed delivery (ack enforced), duplicate
removal (message ID) and message ordering (sequence numbers). SOAP and http
do NOT provide those qualities. Further QOS extensions could be: time to hold
messages, number of retries etc. Proxies are considered transparent.

Application
layer

Application
layer

persistent
messages

persistent
messages

message
ordering

MUST send
ack!!!

30

Secure Messages

WS-Security goes from channel based security to message (object) based
security. Individual messages can be signed and encrypted. WSDL can advertise
the QOS expected/provided by a receiver. End-to-end security is possible across
intermediates. See my internet security lecture for details on WS-Security,
security policies and expressions (SAML, WS-Policy), WS-SecureConversation
and WS-Trust. The idea of the „Virtual Organization“ – overlay structures over
existing real organizations is one of the driving factors here. Today, federation is
more important (see OAuth2) which is expressed in WS-Federation standard.

Application
layer

Application
layer

Digital Signatures:
XMLDsig

Digital Encryption:
XMLEnc

signed

encrypted

SOAP envelope

31

Using XML DSIG and XML XENC in SOAP
SOAP envelope

SOAP header

SOAP body

ds:Signature elements

xenc:ReferenceLists,

xenc:EncryptedKeys

xenc:EncryptedData

signed blocks

To make DSIG and XENC compatible with SOAP ws-security defines a number of rules,
most of them having to do with the fact that Web Services are explicitely designed for use
with intermediates. Those intermediates can add signatures or encryption to the SOAP
envelop, e.g. to create a chain of trust. The rule here is that new signatures or encryption
information is always PREPENDED to already existing information. No encryption of
envelope, header or body tag is allowed. Signatures need to respect the right of intermediates
to change the envelope or some header information. Again, these restrictions are the results
of SOAP processing by intermediates.

32

Encrypted Keys in WS-Security
<wsse:Security>

 <xenc:ReferenceList>

 <xenc:DataReference URI=„#foo“/>

 </xenc:ReferenceList>

<wsse:Security>

.....

<s:Body>

<xenc:EncryptedData Id=„foo“>

 <ds:KeyInfo>

 <ds:KeyName>CN=Walter Kriha, C=DE</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>a5e349cddb1243....</xenc:CipherValue>

<xenc:CipherData>

</xenc:EncryptedData></s:Body>

<wsse:Security> <xenc:EncryptedKey>

<ds:KeyInfo>......

<xenc:CipherData>

 <xenc:CipherValue>78ef34abc3412....</xenc:CipherValue>

<xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI=„#foo“/>

 </xenc:ReferenceList> <wsse:Security>

.....

<s:Body> <xenc:EncryptedData Id=„foo“>

 <ds:KeyInfo>

 <ds:KeyName>CN=Walter Kriha, C=DE</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>a5e349cddb1243....</xenc:CipherValue>

<xenc:CipherData>

</xenc:EncryptedData></s:Body>

The message on the left side assumes a shared symmetric key between receiver and
sender. Therefore no key is embedded or referenced. Only the key names are associated
with the encrypted parts. The right side embeds an encrypted key in the message -
probably encrypted using the receivers public key. The key points to the encrypted part.

33

 Token based delegated authorization

calender
web service

Owner A

scheduler
web service

Colleague B

Privacy
assertion
service

requsts token
that allows B to
access calender
of A in a
restricted way

A gives token to B

B delegates A‘s
token to scheduler,
together with his
own token

scheduler gets token from privacy service which
asserts that scheduler respects privacy

calender service verifies all 3
tokens and allows scheduler to
change A‘s calender

This is an example from the roadmap for ws-security. Please note that it depends on
expiration data in the tokens how often A needs to re-issue an access token for B. If B
needs to access the calender frequently it might be better to use endpoint access control
to restrict and control B‘s access. See next page. Just extending the expiration dates
causes problems with revocation.

34

Secure Association Markup Language
(SAML)

 SAML assertions

Policy Policy Policy

Authentication
Authority

Authorization
Authority

Attribute
Authority

Requester

request and
credentials

SAML
assertions

Policy Enforcement
Point (Service)

Request with SAML
assertions

optional check with assertion
issuer if token does not contain
signatures

optional: proof-of-possession step

SAML allows to EXTERNALIZE all policies and mechanisms with respect to
authentication, authorization and attribute assertion. The access control point needs to
check only the assertions but does not have to implement all these mechanisms. On top of
this, SAML makes all these statements interchangeable between different services because
the format of the assertions is fixed.

35

Coordination and Transactions

Loosely coupled services which last a long time cannot use regular locking or do
a complete rollback if something fails. Business Activities comprise several low-
leval atomic TA‘s but make progress even in case of individual task failures.

• A generic coordination service providing coordination
tpyes, context and protocol (e.g. atomic transactions,
business activities

• A transaction service which covers traditional TA‘s and
conversational Business Activities.

36

Transactional Web Applications

Rental
cars

Travel
Agency

hotel
reservation

The 2-phase commit protocol does distributed transactions. But it does not really fit to the
web world because it requires resource managers to lock resources. On the un-reliable
medium internet this should be avoided. SOAP does not yet specify a transactional
service. OASIS is working on „Business Transaction Processing“ to support Web
Services Transactions. IBM is proposing a model using „tentative“ reservation to
overcome the locking problem.

The travel agency needs to reserve a flight, book a car and a
hotel room for a traveller.

lock room #47

lock car #24

Flights

Lock seat #5

37

Transaction Models

Complete rollback is too expensive for long running business activities.
Intermediate results must be visible early – compensating acting try to undo tasks
in case of business errors. Internet site do not like the locking of resources by
external callers...

Transaction

ActivityAtomic

• not nested

• short

• tightly coupled business task

• rollback in case of error

• errors: system crash

• nested tasks

• long running

• loosely coupled business activity

• compensating tasks and activities

• errors: order cancellation etc.

38

Coordinator

A Coordinator

Activation works like a factory method to create a new Coordination Context.
This context is forwarded to participants which register through it either directly
with the first coordinator or with their own coordinator which registers itself as a
sub-coordinator. Protocol and type of coordination are contained in context.

Activation Registration

ParticipantTransaction
Starter

create Context

forward Context

register with Coordinator

Context
Context

Context

Coordinator
(subordinate)

Activation Registration

register indirectly
Context

39

Stateful Web Services

Stateful architectures like computational grids need the concept of a resource.
WS-Resource adds this via meta-data descriptions contained in the WSDL and
WS-Adressing schemas. An identifier is used to communicate state information
between requestors and endpoints. On top of WS-Resource advanced notification
requests can be built. See: The WS-Resource Framework (Czaikowski, Ferguson
et.al.)

requestor

wsdl + resource
property description

endpoint with
get/set methods

endpoint reference
including resource

property identificator

get/set operations,
notification registration,
lifecycle (create/destroy)

40

Best Practice for Promoting Scalable Web Services

1. Stay away from using XML messaging to do fine-grained RPC. For example, stay away from a service which returns the
square root of a number. Stay away from a service that returns a stock quote (this is the classic-cited example of a
Web service).

2. Conversely, use course-grained RPC. XML web services usually have to be defined at a coarser granularity than ordinary
software objects. That is, use Web services that "do a lot of work, and return a lot of information".

3. When the transport may be slow and/or unreliable, or the processing is complex and/or long-running, consider an
asynchronous messaging model.

4. Always take the overall system performance into account. Don't optimize until you know where the bottlenecks are, i.e.,
don't assume that XML's "bloat" or HTTP's limitations are a problem until they are demonstrated in your application.

5. Take the frequency of the messaging into account. A high rate of requests might suggest that you load (replicate) some of
the data and processing back to the client. The client occassionally connects to synch-up with the server, and get the
lastest data.

6. Aggregation using replication. There will be Web services which serve to aggregate data from other Web services. One
approach is to perform the aggregation on demand - the services which supply the data are invoked in real time, the
data is aggregated, and returned to a requesting client. Alternatively, all the data from the supplier services may be
retrieved during off-hours in one large, course-grained transaction. Thus, the aggregation is performed in real-time
(rather than trying to retrieve the supplier data in real-time). The later is recommended whereever possible.

this is the result of an interesting discussion at xml-dev. Do you agree?

41

Other Web Services Architectural Models

Representational State Transfer Architecture (REST), SOA and Policies
are models beyond mere messaging. Diagram taken from „Web
Services Architecture (w3c)

42

Service Oriented Architecture (SOA)

Beyond WebServices

43

Example

Taken from http://avc.blogs.com/a_vc/2004/11/the_architectur.html to show
you web services that work. Most public WebServic es were much simpler
than the interfaces defined in the WS-specifications and used a REST API
on top of this!

Let's look at my effort on monday to get Wilco's cover of Blue Oyster Cult's Don't Fear The Reaper into my
iPod and posted on my blog.
This effort required to integration of about eight web services, most of which were supplied by individuals,
not businesses.
Web Service #1 - Wilcoworld webcasts the Fillmore Show live over the internet
Web Service #2 - Somebody records the internet stream using Total Recorder
Web Service #3 - HappyKev uploades the Bittorrent of the show into etree
Web Service #4 - Wilcobase posts the setlist from the Fillmore show
Web Service #5 - Bloglines shows me the setlist via RSS
Web Service #6 - I find the torrent on etree and download it using Azureus
Web Service #7 - I convert the files to MP3 using dbPowerAmp
Web Service #8 - I blog it using Typepad

http://www.wilcoworld.net/roadcase/index.html
http://www.highcriteria.com/

44

Why UDDI could not work

• central registries of service descriptions

• independent automatic agents searching for services

• machines understanding service descriptions

• machines deciding on service use

• machines being able to use a service properly

• machines being able to construct advanced workflows from different
services

A hype must be pretty big to make people forget about the problems behind
above assumptions. But it gets worse: even if you replace machines with
human beings (e.g. for the service decision) UDDI does not work: Too
much in services is ambiguous, undefined or expressed in different and
incompatible terms – not to forget that the service interface use (order of
calls, meaning of datatypes etc.) is undefined as well.

45

Missing Technology behind UDDI

policies

create request from
WSDL description

Not to forget things like business languages which standardize business terms
like contract, sale, customer etc. Generally speaking a ton of meta-data where
missing. Webservices (WSDL, SOAP) merely covered the mechanics of
message exchange.

Autonomous
Agent

Meaning of
data types and

interfaces

Meaning of
actions

Understanding
and matching
of constraints

Understanding
Flows and

Goals

Process
Exectution
Languages

Business
Domain
knowledge

Ontologies

Risk

Trust
Establishment

46

Lessons Learned from WebServices and
CORBA

• Webservices are a low-level concept which need more
semantics

• Workflow has not really been covered by WS and CORBA
• SOA is not only about interfaces and interface design. In

the first place it is about HOSTING SERVICES. An ounce
of a really available service on the web is worth more than
a ton of specifications and interfaces

Many of the concepts now sold under „SOA“ have been expressed in the
90‘s e.g. in the „Business System Application Architecture“ of the OMG
(www.omg.org)

47

 SOA Core Properties

• Services offer high-level, business type interfaces

• Service Choreography (aka workflow) is performed outside services
which allows the combination of services into larger business processes

• A set of semantic standards and technologies allows agents to
understand services and their interfaces (OWL, SAML, Semantic Web
etc.)

• Legacy applications will be wrapped through a service interface and
become available to other companies

• SOA will use Web Service technology at its base

It is interesting to see the how the industry seems to shy away from the
term „workflow“ in this context. Too many projects gone south and too
many unfulfilled promises?

48

SOA Architectural Model

This diagram from „Web Services Architecture“ (see resources) shows internal
and external elements of the SOA architecture. Action e.g. is not an externally
visible element. Note the important roles of „policy“ and „semantics“

49

SOA Design

This diagram is modelled after O.Zimmermann et.al. „Elements of a Service-
Oriented Analysis and Design“ (see resources). The paper also shows nicely how
flow oriented a SOA really is and that a class diagram does not catch the essence
of SOA. A state-diagram performs much better. The authors also note that SOA is
process and not use-case driven design.

Business
Object

Service

Component

Business
Object

Service

Component

Business
Service

Choreography

50

Interface Design

Only objects (classes) are programming language constructs. But a
detailed look at the interfaces reveals that component and service type
interfaces are just a different type of interface model.

Object interface: can be conversational, accepts transactions,
fast, Object references

Component interface: value objects, transaction border,
relatively fast. Mostly stateless.

Service interface: long running transactions with state in DB.
Compensation Functions. Short process time, long business
TA time. Isolated and independent. Composable to larger
services (choreography) or composed of smaller services
(orchestration). Stateless.

51

SOA Blueprint Service Types

• Component Service: atomic operation on a simple object (e.g. DB-access)
• Composite Service: atomic, uses several simple services (orchestration),

stateless for caller.

• Workflow Service: Stateful, defined state changes (state kept in persistent
store)

• Data Service: Information integration via message based request/response
mechanism.

• Pub/Sub Service: typical event service with callbacks and registration.
• Service Broker: Intermediate, rule based message manipulation and

forwarding
• Compensation Service: revert actions (not rollback like)

From the SOA Blueprint of The Middleware Company
(TMC) found in: Soa auf dem Prüfstand (see resources)

52

Event-Driven SOA: ESB

The concept of an Enterprise Service Bus played a
major role in SOA: The bus was supposed to allow loose
coupling between apps, format conversions,
notifications and pub-sub features.
(from:https://zato.io/docs/intro/esb-soa.html

53

Meta1:Automatic Service Composition

An e-procurement example using semantic and generative technologies (Christoph
Diefenthal/Fraunhofer IAO)

54

SOA: Critical Points

Jeppe Cramon, SOA and Event Driven Architecture (SOA 2.0)
http://www.slideshare.net/jeppec/soa-and-event-driven-architecture-soa-20

55

Meta to the Rescue...

B. Elvesæter, “Service Modelling with SoaML”, tutorial at the SSAIE 2010
http://www.slideshare.net/elvesater/be-ssaie-2010soamlpresentation

56

SOA vs. Microservices: Service Taxnonomy

SOA services are much more detailed and owned by
different groups. See: Mark Richard, Microservices vs.
SOA (Oreilly, sponsored by NginX)

57

SOA vs. Microservices: Service Granularity

SOA services are more often transactional and therefore larger than
MS. MS use eventual (BASE) technologies (eventual consistent
stores, event-sourcing approaches) which are NOT ACID!

Service
User

S1

S2

No transactional
bracket, different
DBs

Service
User

S1

S2

No transactional
bracket, different
DBs

Service
User

S1

S2

Distributed
Transaction
(costly, fragile)

Service
User

S1

S2

Shared enterprise
service
(transactional)

S3

58

Service Arc.: Orchestration vs. Choreography

Service
Middleware

S1 S2 S3

API
Gateway

S1 S2 S3

SOA prefers
orchestration due to
higher level middleware
components

Microservices prefer
choreography which can
lead to highly connected
and dependent systems

Mark Richard, Microservices vs. SOA (Oreilly, sponsored by
NginX)

59

SOA vs. Microservices

- much more enterprise
architecture with
middleware
(messaging) , service
layers and ownership
concepts
- more contract
decoupling using meta-
data and messaging
middleware
- “share as much as
possible” approach
- big services are
transactional

- simple API gateway,
teams own infrastructure
and business services
- no contract decoupling
- “share as little as
possible” approach
- services offer only
BASE consistency
(eventual)

60

Representational State Transfer
(REST)

61

RESTful Web – against the RPC Model

-The WEB is based on representation of resources
using URIs, Web Services create private, non-standard
ways of information access

-The envelope paradigm does not add any value over
the generic http get/put/post

-RPC mechanisms are not suitable for the WEB. Some
extensions to get/put/post might be necessary though
(going in the direction of tuple-space systems)

This is a hot topic currently: ask yourself whenever you think about building a web
services: could it be done with just an http get or post? REST btw. stands for

Representational State Transer Architecture, a term coined by Roy Fielding, the father
of http. see resources on REST. But in later versions Web Services have been extended

through a document centric model as well.

62

The Web’s Architectural Style

●Client-server
●Uniform interface

●Identification of resources (URI)
●Manipulation of resources through representations
●Self-descriptive messages (Meta-data, header, convers.)
●Hypermedia as the engine of application state
(HATEOAS): Response contains actionable links

●Layered system (Intermediaries for caching, security, LB)
●Cache (Declare the cacheability of a response)
●Stateless (Clients need to provide context/state)
●Code-on-demand (Server can send scripts, flash, applets etc.)

from: M.Masse, REST API Desing Book

63

REST Maturity Model

Level 0: RPCs to an endpoint

Level 1: Resources and Representations

Level 2: Correct Http Verbs used

Level 1: Resources and Representations

Level 3: HATEOAS

See resources: Richardson, Fowler

64

REST Level 0: RPC

Client Service

POST /appointmentService
<openSlotRequest doc = “Webster”, date=“12_12_2020” />

<openSlotList doc=”Webster”, time=”15.00-16.00” date=” 12_12_2020”>

POST /appointmentService
<appointmentRequest PatientID=”WSmith”,doc=”Webster”, time=”15.00-16.00”
“date=12_12_2020“ />

OK: <appointment doc=”Webster”, time=”15.00-16.00” date=” 12_12_2020”>
OR: <appointmentRequestFailure doc=”Webster”, time=”15.00-16.00” date=”
12_12_2020”>

After (modified): Fowler, RMM. This looks like regular RPC to one endpoint. The appointment
made does not show up as a resource and is not accessible without a new RPC function

65

REST Level 1: Resources

Client Service

POST /doctors/webster/slots
<openSlotRequest date=”12_12_2020”/>

POST /doctors/webster/slots/14
<appointmentRequest patient=”WSmith” />

After (modified): Fowler, RMM. Function names and parameters have been turned
into resources. Appointments do have an identity now and anybody can get/post
something to an existing appointment

<openSlotList appointment= “14” doc=”Webster”, time=”15.00-16.00” date=”
12_12_2020”/>

OK: <appointment doc=”Webster”, time=”15.00-16.00” date=” 12_12_2020”>
OR: <appointmentRequestFailure doc=”Webster”, time=”15.00-16.00” date=”
12_12_2020”>

66

Rest Resource Archetypes

● Document: Fields and links (base resource, noun, create:POST)
● Collections: Containers maintained by server with URI
generation (noun, POST)
● Stores: Container elements maintained by client with “put” and
without URI generation on server side (noun, insert/update:PUT)
● Controllers: Procedures (verb, POST)
● URI Path Design: Reflects resource model
● Variable path segments with query terms

After: M.Masse, REST API Design Book

67

REST Level 2: Http Verbs

Client Service

GET /doctors/webster/slots?date=12_12_2020&status=open

POST /doctors/webster/slots/14
<appointmentRequest patient=”WSmith” />

After (modified): Fowler, RMM. It is now crucial to use the correct verb. GET is
idempotent and creates cachable resources. The response codes have to be used
correctly, in this case to indicate a new resource or a conflict. Do not use OK codes
and report an error in the body.

<openSlotList appointment= “14” doc=”Webster”, time=”15.00-16.00” date=”12_12_2020”/>

201 created <appointment doc=”Webster”, time=”15.00-16.00” date=” 12_12_2020”>
OR: 409 conflict <openSlotList appointment= “14” doc=”Webster”, time=”16.00-17.00”
date=” 12_12_2020”/>

68

REST Level 3: HATEOAS

Client Service
GET /doctors/webster/slots?date=12_12_2020&status=open

POST /doctors/webster/slots/14
<appointmentRequest patient=”WSmith” />

After (modified): Fowler, RMM. Responses now encode optional actions which
can be invoked by the client. Services can change URIs without breaking clients.
The rel attibute describes the semantics behind the URI link.

<openSlotList appointment= “14” doc=”Webster”, time=”15.00-16.00” date=”20201212”>
<link rel=”/linkrels/slot/book” uri = “/slots/14”/>

201 created
<appointment doc=”Webster”, time=”15.00-16.00” date=”20201212”>
<slot id = "14" >
<patient id = "wsmith"/>

<link rel = "/linkrels/appointment/cancel" uri = "/slots/14/appointment"/>
<link rel = "/linkrels/appointment/addTest" uri = "/slots/14/appointment/tests"/>
<link rel = "self" uri = "/slots/14/appointment"/>
<link rel = "/linkrels/appointment/changeTime" uri = "/doctors/webster/slots?date=20201212@status=open"/>
<link rel = "/linkrels/appointment/updateContactInfo" uri = "/patients/wsmith/contactInfo"/>
<link rel = "/linkrels/help" uri = "/help/appointment"/>

</appointment>

../../../../../../doctors/webster/slots%3Fdate=20201212@status

69

RESTful Web: CRUD like Message Semantics

Is this separation of updates and reads something new? Not by far. Bertrand Meyer of OO fame
calls this a core principle of sound software design and made it a requirement for his Eiffel
programming language. He calls it “”command-query separation principle”:
“Commands do not return a result; queries may not change the state – in other words they satisfy
referential transparency” B. Meyer, Software Architecture: Object Oriented Versus Functional
[Meyer]

Resource

Representation

Requestor

GET -> Read (idempotent, does not change server state)
POST –> Create resource on the server
PUT -> Update Resource on the server (??)
DELETE -> Delete Resource on server

70

RESTful Web Features

All state change is reflected by a change in representation. Resources are manipulated
through a very simple and uniform interface (CRUD like) and through the exchange of
representations. This is how the WWW works. A subset of Web Services are REST-
compliant. From A.Rodriguez, see resources.

Four strands that make a servive RESTful:
• explicit use of http protocol in a CRUD like manner
• stateless design between client and server
• meaningful URIs which represent objects and their
relationships in the form of directory entries (mostly
parent/child or general/specific entity relations)
• use of XML or JSON as a transfer format and use of
content negotiation with mime types

71

REST: critical points

There are solutions for those problems, but for inter service calls (see microservices
later) it is often more convenient to use an RPC protocol (thrift, protocol buffers etc.)

• At-least-once delivery of requests?
• At-most-once delivery of requests?
• Transactions (optimistic, ETAG)?
• (Federated) Security with bearer tokens?
• Secure delegation and backend security?
• Performance over http?
• Too many round-trips? (Orchestration API)

When new requirements come along, developers face a choice: Should we create a new
endpoint and have our clients make another request for that data? Or should we overload
an existing endpoint with more data?Developers often choose the 2nd option because
it’s easier to add another field and prevent a client-to-server round trip. Over time, this
causes your API to become heavy, kludgy, and serve more than a single responsibility

From: https://medium.com/paypal-engineering/graphql-a-success-story-for-paypal-
checkout-3482f724fb53

72

Post REST?

• Messaging and Eventing · This approach is all over, and I mean all over, the cloud infrastructure that I
work on. The idea is you get a request, you validate it, maybe you do some computation on it, then you
drop it on a queue (or bus, or stream, or whatever you want to call it) and forget about it, it’s not your
problem any more.
¶

• Orchestration · This gets into workflow territory, something I’ve been working on a lot recently.
Where by “workflow” I mean a service tracking the state of computations that have multiple steps, any
one of which can take an arbitrarily long time period, can fail, can need to be retried, and whose behav
ior and output affect the choice of subsequent output steps and their behavior.

• Persistent connections · Back a few paragraphs I talked about how MQ message brokers work, main
taining a bunch of nailed-up network connections, and pumping bytes back and forth across them. It’s
not hard to believe that there are lots of scenarios where this is a good fit for the way data and execution
want to flow.

• GraphQL: control plane in REST, data plane in other technologies

https://www.tbray.org/ongoing/When/201x/2018/11/18/Post-REST

73

GraphQL: a Query-API

Diag from: https://www.howtographql.com/

74

GraphQL Properties

- No over/underfetching
- Fewer requests
- One endpoint with resolvers
- Data and query syntax identical
- Typed to avoid mistakes
- Federated servers possible

- Danger: huge queries possible (see:
https://blog.acolyer.org/2018/05/21/semantics-and-co
mplexity-of-graphql/
 for an polynomial time algorithm)

https://blog.acolyer.org/2018/05/21/semantics-and-complexity-of-graphql/
https://blog.acolyer.org/2018/05/21/semantics-and-complexity-of-graphql/

75

MicroServices

Technology and Eco-System

76

Forces/Context

● Ultra large-scale sites require efficient horizontal scaling
● Unicorn companies need to develop new features
extremely fast with independent teams
● Unicorn companies need to deploy new features
extremely fast (competition, experiments)
● Unicorn companies need to offer an API for network
effects

Fat applications running on
application servers do not fit into
this context!

77

Scalability Problems of Monolithic
Applications

Application

Comp

Comp Comp

Comp

Application

Comp

Comp Comp

Comp

Deployment
as a whole
only

Hard to
scale
central DB

Developers
dependent
on general
release plan

Hard to scale
API

78

Solution: Partitioning/De-Composition

MS

MS

MS

Functions

Data

Customers

79

MicroServices: Vertically Partitioned Functions

Application
Gateway

MSMS MS MSMS MS

Individual
deployment (A/B
test easy)

Independent
teams and
releases

DBs
independent
(often
anyway due
to sharding)

Quickly
scalable API

MS MS

80

Eco-System: Vertically Partitioned Teams

GUI

BUS

DB

OPS

REQ

After: Henrik Kniberg & Anders Ivarsson, Scaling Spotify

81

Eco-System: Technologies and Processes

- Continuous integration/deployment (experiments)
- Fully automated build and deploy
- Free choice of languages
- Continuous monitoring (ELK etc.)
- REST APIs plus RPC tools
- Containers over VM: small MS waste VM instances
- DevOps: teams responsible for operations
- Site-Reliability Engineers (SRE)
- No distributed transactions
- Federated Security
- Fault-tolerance patterns

82

MS Death Star

From:Adrian Cockcroft, Globally Distributed Cloud
Applications at Netlix (Uber: 2000 MS in 1.5 years!)

83

Monitoring/Tracing

From:Adrian Cockcroft, Globally Distributed Cloud
Applications at Netlix. Needs fully automated everything

84

MS Security: Bearer Tokens

Backend security and secure delegation are needed!

85

MS Security: OAuth2

From: D.Ferriera, Authentication and Authorization Architecture
for Microservices, Qcon 2016

86

Main MicroServices Patterns
Microservices architecture: loosely coupled services and teams
API gateway: Facade to fine-granular services
Client-side discovery: provided by MS chassis (e.g. spring boot)
Server-side discovery
Service registry:services register themselves during startup
Self registration: by chassis
Service instance per Container: scales better than VM per service
Serverless deployment: see nanoservices below
Database per Service: no touching other MS database..
Event-driven architecture: programming without a stack...
Event sourcing: record change events in event store
CQRS: separate update and idempotent reads (eventual...)
Transaction log tailing:follow transaction log for changes
Database triggers: put events in events table after changes
Application events

After: C.Richardson,
http://microservices.io/patterns/

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/deployment/service-per-container.html
http://microservices.io/patterns/deployment/serverless-deployment.html
http://microservices.io/patterns/data/database-per-service.html
http://microservices.io/patterns/data/event-driven-architecture.html
http://microservices.io/patterns/data/event-sourcing.html
http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/transaction-log-tailing.html
http://microservices.io/patterns/data/database-triggers.html
http://microservices.io/patterns/data/application-events.html

87

Event Sourcing/CQRS

Event
Store

App
Gate
way

Re-create Bus.
Obj.

Get events(id7)

update)

store events(id7)

Materialized
View

Watch events

After: Building and deploying microservices with event
sourcing, CQRS and Docker (QCONSF 2014) from Chris
Richardson

MS1 MS2

88

Caveats

There’s no such thing as a microservices architecture, there is software
architecture. The size and granularity of services are a dimension of the
solution, not a given of the problem. To dictate it from the start is reductive
and only shifts complexity elsewhere

https://vlfig.me/posts/microservices

89

Project-Build-Deployment Models

Define dependencies on several layers. Compile time dependencies are safer
than runtime dependencies.

https://vlfig.me/posts/microservices. Also:
https://randalldavis.github.io/microservice/testing/2017/06/05/microservice-
edges.html

https://vlfig.me/posts/microservices

90

Eventual Consistent Data

After: Building and deploying microservices with event
sourcing, CQRS and Docker (QCONSF 2014) from Chris
Richardson

Scenario:
1. User created
2. Shopping Cart created

------ User does not yet have the cart -----------
What should clients do in that case? Repeat request?
Which error status should be used?

3. Shopping Cart added in User

91

Critical Points

● Cross-Concerns: Transactions, Security, Performance,
Scalability: SRE’s to the rescue?
● VMs too big for small services with low throughput
● Maintenance of large numbers of services (Netflix death
star, Uber:2000 MS in 1.5 years)
● Monitoring complex due to large number of independent
services (correlation?)
● Different languages and technologies used
● Danger of new central bottlenecks (eventstore?)
● REST often not the best API model and transport
● Distributed commits are “eventual consistent” and not
allowed to get lost!

92

Photo Site Example

https://mariadb.com/resources/blog/how-create-microservices-and-set-
microservice-architecture-mariadb-docker-and-go

93

Refactoring MS-Architectures

Backend-for-frontend, reducing round trip times, avoiding coupling,
better languages and protocols, gRPC, domain services etc.
https://eng.uber.com/gatewayuberapi/

94

Serverless Computing

95

Serverless Computing (Aka FaaS,
NanoService etc.)

Serverless will fundamentally change how we build
business around technology and how you code; Containers 
are important but ultimately invisible subsystems and this is
not where you should be focused.

Todd Hoff, highscalability.com

96

What Is Serverless?

A cloud-native platform for short-running, stateless computation
And event-driven applications which scales up and down instantly and automatically
and charges for actual usage at a millisecond granularity (Stephen Fink, IBM defines
serverless at @ServerlessConf London, 28th Oktober 2016)

● Decoupling of computation and storage; they scale separately and are priced
independently.

● The abstraction of executing a piece of code instead of allocating resources on which to
execute that code.

● Paying for the code execution instead of paying for resources you have allocated to
executing the code.

(Cloud Programming Simplified: A Berkeley View on Serverless Computing, Eric Jonas
et.al.)

97

Stateless

- Where is config information? Dummy class file in classpath?
- No memory in function
- “mostly stateless Java VM” (static class initializers…)
- needs stuff in persistent storage (like s3): change mgt.
- hypercomposition is hard to do

98

Serverless Platform

99

OpenWhisk Runtime

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28th Oktober 2016

Scala
/akka

100

OpenWhisk Controller

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28th Oktober 2016

101

OpenWhisk Invoker

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28th Oktober 2016

User code
Injected
(warm)

No code yet

Container manager

102

OpenWhisk Serverless Feed Action

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28th Oktober 2016

Webhook API

103

Amazon AWS Examples

https://www.youtube.com/watch?
v=eOBq__h4OJ4&feature=youtu.be

104

The Serverless Bubble?

https://www.jeremydaly.com/takeaways-from-serverlessnyc-2018/

105

Serverless Issues

- countless small IAM rules
- coupling with less scaleable components
- coldstart
- Unclear bug handling (dlq, rquest order, wrapper)
- Stateful functions
- Limits everywhere
- New testing concepts needed
- high costs when waiting for something

https://www.jeremydaly.com/takeaways-from-serverlessnyc-2018/

106

The State of Serverless

•Unreliable latency

•Functions not directly addressable

•Poor support for standard com. Patterns (e.g.
batching)

•1 CPU/function

•Limited lifetime

•Debugging/tracing/monitoring
hard/impossible (dead letter box)

•Autoscaling dangers (cost, time)

•Storage systems not good for small
objects/calls (expensive/slow)

•No fine-grained coordination

•See the Berkeley Serverless Report
(Literature)

107

Serverless Microservice Patterns

- Scalable Webhook
- Gatekeeper
- Internal API
- Internal Handoff
- Aggregator
- Notifier
- FIFOer
- Streamer
- Router
- State Machine
- etc.

Watch out for
prices, latencies,
failure handling
(DLQ)

https://
www.jeremydaly.com/
serverless-microservice-
patterns-for-aws/

108

Even smaller: Isolates

https://blog.cloudflare.com/cloud-computing-without-containers/

This goes in the same direction as library operating
systems. The isolation concept is by controlling references
in the compile process (object capabilities? Like
Singularity?). Multi-tenancy!!

109

New MicroVM for Functions

Diag. By David Bryant,
https://www.infoq.com/news/2018/12/aws-firecracker

Size and startup time are essential for serverless computing. Firecracker,
a new – Rust-based – MicroVM (fork of CromiumOs VM).

110

A Function Market?

The future of software development will be lots of lambda functions consumed from a marketplace, stitched
together with some new capability. Waste will be reduced, bias (i.e. custom building something which is already
well crafted) will start to disappear and we get all that other good "financial development" stuff the last post
covered. Hurrah!

So when I look at my trading system, then as time goes on then not only will more and more of the components be
provided by the AWS marketplace but if AWS is playing an ILC game then many will become industrialised
components provided by AWS itself. The marketplace will just be future potential AWS components and on top of
this, all the novel exciting stuff (which is directly giving early warning to AWS through consumption data) is just
future market components. I've shown an example of this in the map below.

The benefits to consumers i.e. those trying to build stuff will be overwhelming. Amazon will continue to accelerate in
efficiency, customer focus and apparent innovation despite the occasional gnashing of teeth as they chew up bits of the
software industry. Have no doubt, you can use this model to chew up the entire software industry (or the duplicated
mess of bias which calls itself a software industry) and push people to providing either components sold through the
marketplace or building actually novel stuff.

Now most executives especially in the software industry will react just as they did with cloud in 2006/07 by trotting out
the usual layers of inertia to this idea. It'll never happen! This is not how software works! It's a relationship business!
Security! Prior investment! Our business model is successful!

Simon Wardley, blog.gardeviance.org/2016/11/amazon-is-eating-
software-which-is.html.

111

Resources (1)

xml-dev: mailing list for XML developers. High traffic site. Had a
good discussion on XML-RPC performance lately

• Security for Web services, Raghavan Srinivas,
http://www.sun.com/developers/evangcentral/totallytech/Warsaw/Secu
rityWarsaw.pdf

112

Resources (2)

• Programming Web Services with SOAP, J.Snell et.al., O
´Reilly 2002.

• www.oasis-open.org , Portal for ebXML and other XML
schema definitions. Work on business transactions over
web-services.

• Global XML Web Services Architecture, Microsoft paper
October 2001, www.gotdotnet.com (.net portal for web
services)

• Michael Stal, Web Services im Überblick,
Objectspectrum 7/8 2001

• www.uddi.org, portal for UDDI.

113

Resources (3)

• The IBM UDDI registry:
http://www.ibm.com/services/uddi

• Microsoft's UDDI registry: http://uddi.microsoft.com
• Andre Tost, UDDI4J lets Java do the walking. Good

introduction to the concepts behind UDDI
• Steve Vinoski, Web Services and Dynamic Discovery,

Article on webservices.org about the real difficulties with
ontologies and automatic understanding. Yes, Steve is one
of the fathers of CORBA and IONA´s chief architect.

• P.J.Murray, Web Services and CORBA, CapeClear. Good
explanation of the mapping problems when exposing
CORBA services via Web Services.

114

Resources (4)

• Dave Winer et.al., A busy developers guide to SOAP1.1, from
www.soapware.org, bare bone explanation of the most important
features. Does not cover SOAP with attachements etc.

• Web Services for Remote Portals (WSRP),
http://www.oasis-open.org/committees/wsrp/ , a new approach to re-use
services WITH their GUI. Headed by Thomas Schaeck, IBM Böblingen

• the RESTwiki on http://conveyor.com/RESTwiki/moin.cgi

• Principled Design of a modern Web Architecture, R. Fielding,
http://www.cs.virginia.edu/~cs650/assignments/papers/p407-fielding.pdf

• Alex Rodriguez , RESTful Web services: The basics, IBM , 06 Nov 2008
http://www.ibm.com/developerworks/webservices/library/ws-restful/inde
x.html?S_TACT=105AGX54&S_CMP=B1113&ca=dnw-945

115

Resources (5)

• James McCarthy, Reap the benefits of document style Web services
http://www-106.ibm.com/developerworks/library/ws-docstyle.html?n-ws-
6202 . A nice explanation of document style web services and when to use
them. E.g. if there is NO pre-existing rpc-service you might be better of
designing your communication in document style right away. Better for
asynchronous processing as well. And coarse grained which is better in many
cases of dist-sys as we have learned.

• The WS-Resource Framework V1.0, Czaikowski, Ferguson et.al. describes the
addition of statful resources to web services by using meta-data and identifiers.
Read the grid papers to understand the need for it.

• Security for Grid Services, Von Welch et.al. Describes the security needs of
virtual organizations.

• Martin Brown, Building a grid using Web Services standards Part1-6.
www.ibm.com/developerworks Shows a distributed movie serving application
built with web services. Looks a bit like napsters design. Shows how similar
p2p and grid applications really are.

• REST in Rails: http://www.b-simple.de/documents

116

SOA Resources (1)

• Olaf Zimmermann et.al., Elements of Service-oriented
Analysis and Design, 6/2004, www.ibm.com/developerworks

• Ali Arsanjani, Service-oriented modeling and architecture,
11/2004 www.ibm.com/developerworks

• Guido Laures et.al., SOA auf dem Prüfstand, ObjectSpektrum
01/2005. Covers the new benchmark by The Middleware
Company for SOA implementations

• David Booth et.al, Web Services Architecture – W3C
Working Group Note 2/2004. A very good introduction which
explains the architectural models nicely. Covers messaging,
resources, SOA and policies. Lots of interesting links to
additional standards.

117

SOA Resources (2)

• WS-Policies, Standard for matching and merging of service policies.
Note that the standard is conservative and does not require advanced
merging when basic types differ

• Christoph Diefenthal, Automatic composition of business processes
between companies - using semantic technologies and SOA. (Thesis
work at the HDM and Fraunhofer IAO). Excellent work showing
web intermediates integrating business services automatically.

• http://www.oreillynet.com/pub/wlg/3017, Tim O‘Reilly on what
makes open source different and empowering. Very good.

• http://www.onjava.com/pub/a/onjava/2005/01/26/soa-intro.html
shows how JINI‘s dynamic service lookup and call features are
offered by SOA in a language independent way

118

REST Resources

• Martin Fowler, Richardson Maturity Model
• Martin Fowler, Enterprise Integration using Rest
• Richardson, Leonard, and Sam Ruby. RESTful Web

Services. Sebastopol: O’Reilly Media, Inc., 2007.
• Mark Masse, REST API Design Book, O’Reilly Media

•

119

Serverless Computing Resources

• Swardley on Why the fuss about serverless?
https://medium.com/@swardley/why-the-fuss-about-server
less-4370b1596da0

• Videos from ServerlessConf, London:
https://www.youtube.com/channel/UCqlcVgk8SkUmve4K
w4xSlgw

• Old Programmers and New Programmers Can Learn New
Tricks - Donald Ferguson https://youtu.be/vWyeS_aAZmo

• Amazon AWS Lambda:
https://www.youtube.com/watch?v=eOBq__h4OJ4&featur
e=youtu.be

• Guide to serverless technologies,
https://thenewstack.io/ebooks/serverless/guide-to-
serverless-technologies

https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://youtu.be/vWyeS_aAZmo
https://www.youtube.com/watch?v=eOBq__h4OJ4&feature=youtu.be
https://www.youtube.com/watch?v=eOBq__h4OJ4&feature=youtu.be

120

Serverless Computing Resources

• Swardley on Why the fuss about serverless?
https://medium.com/@swardley/why-the-fuss-about-server
less-4370b1596da0

• Videos from ServerlessConf, London:
https://www.youtube.com/channel/UCqlcVgk8SkUmve4K
w4xSlgw

• Old Programmers and New Programmers Can Learn New
Tricks - Donald Ferguson https://youtu.be/vWyeS_aAZmo

• Amazon AWS Lambda: https://www.youtube.com/watch?
v=eOBq__h4OJ4&feature=youtu.be

https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://youtu.be/vWyeS_aAZmo

121

MicroServices Resources

• Life Beyond Distributed Transactions,
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf

• MicroServices Patterns: microservices.io (Chris
Richardson)

• Graham Lea, Distributed Transactions: The Icebergs of
Microservices, Posted on August 30, 2016,
http://www.grahamlea.com/2016/08/distributed-
transactions-microservices-icebergs/

•

	Web Services
	Slide 2
	Slide 3
	Overview
	Goals
	Slide 6
	Slide 7
	What are Web Services?
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	WWW: from GUI driven to B2B
	Web Services Components
	Slide 18
	The Web Services Architecture
	Service Discovery (1): UDDI
	Service Discovery (2): UDDI content
	WSDL: The IDL of Web Services
	WSDL Elements
	Request Format of Web Services: SOAP
	SOAP: performance aspects (2)
	Web Services and Firewalls
	Common Business Processes: ebXML
	Web Services Security Standards and Technologies
	Reliable Messaging
	Secure Messages
	Using XML DSIG and XML XENC in SOAP
	Slide 32
	Scenarios (5): Token based delegated authorization
	Secure Association Markup Language (SAML)
	Coordination and Transactions
	Transactional Web Applications
	Transaction Models
	A Coordinator
	Stateful Web Services
	Best Practice for Promoting Scalable Web Services
	Other Web Services Architectural Models
	Service Oriented Architecture
	Example
	Why UDDI could not work
	Missing Technology behind UDDI
	Slide 46
	Elements of SOA
	SOA Architectural Model
	SOA Design
	Interface Design
	SOA Blueprint Service Types
	Slide 52
	Automatic Service Composition
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	RESTful Web – against the RPC Model
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	RESTful Web: CRUD like Message Semantics
	RESTful Web Features
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Resources (1)
	Resources (2)
	Resources (3)
	Resources (4)
	Resources (5)
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

