Services

Distribution paradigm between hype and
revolution

Walter Kriha

™ jasongorman (Follow > v
LY @jasongorman

1998: "You should build systems out of single-
purpose loosely-coupled components

2008: "You should build systems out of single-
purpose loosely-coupled components”

2018: "You should build systems out of single-
purpose loosely-coupled components”

Technology changes so fast!

1:57 AM - 19 Nov 2018

1,726 Retweets 4,390 Likes : ¢

L@ 2050

Q) 66 1 17k Q) a4k

Sometimes, the best thing you can do in technology is change your name

https://twitter.com/swardley/status/952180307540824065
No kidding: think about model-driven architecture becoming no-
code/low-code...

https://twitter.com/swardley/status/952180307540824065

Overview

Standing on the shoulders of giants
— CORBA
— WebServices
— SOA

REST
MicroServices and Conway’s Law
NanoServices (aka Serverless Computing)

Goals

Understand the “service idea” in distributed systems and its history
See how organization and technology need to be aligned

See how different approaches deal with cross-cutting concerns like transactions,
security and delivery guarantees

Tr to understand how “services” and the “layer” architectural design pattern mix.

Try to understand the conflicting goals behind SOA: loose coupling, re-use, short
round-trip times, general services vs. Special needs of applications,
transactions, different granularity, workflow composition from services and
the problems of context and concerns.

Right now it looks like the service idea has “won”. Heavyweight containers
like JEE/.NET demonstrated scalability problems.

Timeline of Distributed Service Architectures

RPC in .
Intranet REST in
Intranet,
RPC in
Data Center
-
1992 1998 2004 2010 2016

Common Request Broker Architecture
(CORBA)

CORBA Services

SPECIFICATION acronym topical area / domain Document #

éc%céitiona] struturing Mechanisms lor the OTS transaction management, middleware formal/2005-01-01
Collection Service COLL collection management, middleware formal/2002-08-03
Concurrency Service CONC object consistency, middleware formal/2000-06-14
Enhanced View of Time EVoT time management, middleware formal/2008-08-01
Event Service EVNT event management, middleware formal/2004-10-02
Externalization Service EXT object state management, middleware formal/2000-06-16
Licensing Service LIC software licensing, middleware formal/2000-06-17
Life Cycle Service LECYC object life cycle management, formal/2002-09-01
Lightweight Services LtSvC resources constraints formal/2004-10-01
Management of Event Domains MED event management, middleware formal/2001-06-03
Naming Service NAM object location management, formal/2004-10-03

middleware

Nofification Service NOT event management, middleware formal/2004-10-11
Notification / JMS Interworking NOTJMS event management, middleware formal/2004-10-09
Persistent State Service PSS object persistence, middleware formal/2002-09-06
Property Service PROP object properties, middleware formal/2000-06-22
Query Service QUER collection management, middleware formal/2000-06-23
Relationship Service REL object relationships, middleware formal/2000-06-24
Security Service SEC security, middleware formal/2002-03-11
Telecoms Log Service TLOG event management, middleware formal/2003-07-01
Time Service TIME time management, middleware formal/2002-05-06
Trading Object Service TRADE object location management, formal/2000-06-27
Transaction Service TRANS transaction management, middleware formal/2003-09-02

http://www.omg.org/spec/index.htm

o o)

Object Request Broker Architecture

Client machine

Client application

Server machine

Object implementation

Static Dynamic ORB Object Skeleton | Dynamic ORB
IDL Invocation | interface adapter Skeleton | interface
Proxy Interface Interface
Client ORB Server ORB
Local OS Local OS
Network

from van Steen, Tanenbaum, Distributed Systems. For protocols etc.: Common Object
Request Broker Architecture: Core Specification, http://www.omg.org/cgi-bin/doc?
formal/04-03-12.pdf

Security: Secure Delegation Concept

CORBA CSIv2 Mechanism

TTP] Authorization Token of C
security context
Tokens Authorization Token of |
Tokens - Target
Inter dentity Token of C App.

Client

mediate Server
SSL1 Identity Credentials or
Token of |

Every system involved authenticates itself against other tiers and
flows client tokens. No secrets are shared. Defined routes prevent
token abuse. Later tiers can verify original requestor and route.

10

Transaction Service

interface TransactionFactory {
Control create(in unsigned long time out);

(transmitred with request)

tramsaction I
transaction originator context recoverable server interface Control {
— } \ Terminator get_terminator();
;W”ﬁ"m’“m” 4 Control Coordinator get coordinator();
Clarven onmre — c Coordinator } H
FYens Terminator Resowrs lrnent acover srdinator 5 3
S.'.":nm:;::rnoﬂ_ihmv‘_.:?-;-':::u;: Recoveny Coordinato 1 nte rfa Ge Te rm 1nato r {
Synchronization void commit(...);
void rollback();
—— Transaction Service B } ' .
S acol <R interface Coordinator {
comtext Kmf?““ RecoveryCoordinator register resource(in Resource r);
(asseciated with thread) fassociated with thread) } . T
r
interface RecoveryCoordinator {
Figure 1-2 Major Components and Interfaces of the Transaction Service Status replay—comp1Et1°n (in Resource r) i

ki

interface Resource {
Vote prepare();
void rollback();
void commit():

. . . };...
ObJ ect Transactlon SerVICe local interface Current : CORBA::Current {

void begin();
void commit();
from CORBA void rollback();
void set timeout(in unsigned long seconds);
unsigned long get timeout();
Control get_control();

Control suspend();
void resume(in Control which);

11

CORBA Example

public class HelloClient {
static Hello helloImpl;
public static void main(String args[])
{ // create and initialize the ORB
ORB orb = ORB.init(args, null);
// get the root naming context
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
// Use NamingContextExt instead of NamingContext. This is
// part of the Interoperable naming Service.
NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);

// resolve the Object Reference in Naming
String name = "Hello";
helloImpl = HelloHelper.narrow(ncRef.resolve_str(name));
System.out.println("Obtained a handle on server object: " (MOdiﬁCd) from:
+ helloImpl); . .
System.out.println(helloImpl.sayHello()); http://docs.oracle.com/javase/7/docs/technotes/gui

helloImpl.shutdown(); des/idl/jidIExample.

CORBA Core Properties

Clearly an INTRANET technology

* Language independent with a focus on interface definitions

Base protocol defined for interoperability and cross-cutting concerns (IIOP)

Delivery guarantees provided by base protocol

Mostly used to connect heterogeneous (legacy) software in large corporations
* Difficult and tedious standardization process

* Lots of “boilerplate code” leading to extensive code generation and model-driven
development

* Java 9 will no longer include CORBA in the default classpath

Michi Henning, The Rise and Fall of CORBA, ACM
http://cacm.acm.org/magazines/2008/8/5336-the-rise-and-fall-gf-corba/fulltext
)

http://cacm.acm.org/magazines/2008/8/5336-the-rise-and-fall-of-corba/fulltext

WebServices

The following 1s only a small part of a much larger course on
webservices, ws-security, canonical XML, encrypted XML etc.

14

What are Web Services?

,, A Web service 1s a software component that represents a
business function (or a business service) and can be accessed
by another application (a client, a server or another Web
service) over public networks using generally available
ubiquitous protocols and transports (1.e. SOAP over http)*.
(http://www3.gartner.com/Init by M.Pezzini, April 2001)

15

WWW: tfrom GUI driven to B2B

<FORM action="http://stockservice.com/getquote" method="post">

<P><LABEL for=valor'">valor: </LABEL>

<INPUT type="text" id=,,valor">
 H |:| I:I
<INPUT type="submit" value="Send"> </FORM> o |:|

stockservice: valor=IBM
(T

v
wn
—+
o
O
Wﬁ

html document with IBM=44.56 server
<xml-rpc><service>stockservice</ I:I I:I
H |:| |:| service><request>getquote><parameter><name>valor</ H
D name><value>IBM</value></parameter></request></xml-rpc> |:|
= m}
<xml-rpc><service>stockservice</
service><response>getquote><parameter><name>IBM</ T
myYahoo name><value>44.56</value></parameter></response></xml-rpc>

A

The concept of a web service is extremely simple: use XML to create requests and
responses and send them using http. This allows machines to communicate with each
others, e.g. to perform supply chain management or other business to business processing.
XML-RPC by David Winer (userland.com) was one of the earliest standard proposals.
Companies have used this technology internally for quite a while. 1«

Web Services Components

H LI] single sign on services: H | | global registry (UDDI)
o D Hailstorm/liberty o D
alliance
(I
Digital Signatures Transactions Metering

Universal Description, Discovery, Integration UDDI (XML)

Web Service Description Language WSDL (XML)

Request format: SOAP (XML)

Transport layer: http(s), smtp, httpr

XML is the standard format used in Web Services. On top of standard transport
mechanisms are requests formatted using the SOAP XML schema. Clients learn
about service providers by browsing the UDDI registry. Services are described in
a special description language, again a XML schema.

17

Web Services Core Properties

- ,,simple* requests

Over public networks/Internet

Using http transport for firewall reasons (Delivery guarantees?)

XML message format (language independent)

Added features for reliability, security and transactions

In many cases a re-write of CORBA interfaces with XML syntax

Expressing a business function

Massively overhyped WebServices postulated automatic
interoperability based on self-describing services and ontologies.

The technical base was provided by forms of XML-RPC. SOAP
had nothing to do with distributed objects in spite of the name!

Service Oriented® Architecture

UDDI
registry

look for service in
UDDI registry

publish services in

retrieve provider registry

location and WSDL
service description

bind and send request via

requester SOAP/http or other " pI’OVIdCI’
transport to provider

create request from
WSDL description

This type of architecture is called ,,service-oriented®. It uses a broker for
service advertisement and lookup. Requester and provider bind dynamically
with respect to transport (http, smtp etc.) (Raghavan N. Srinivas, Web services
hits the Java scene part 1, http://www.javaworld.com) 10

Service Discovery: UDDI

UDDI registry with find and publish API

White pages: Yellow pages: Green pages:
information busmes§ , meta
about ORI, information
companies (loc., pre and about services
industry -
contact etc.) and their
qualities

most distributed services use some kind of central registry for service lookup.
The Universal Description, Discovery and Integration registry plays this role in
web services. Especially the green pages property has led some people to
proclaim automatic service matching by service requesters browsing the meta-
information contained there. For the difficulties behind ontologies and
automated discovery see: Steve Vinoski, Web Services and Dynamic Discovery

on webservices.org AN

AV

Service Discovery (2): UDDI content

<businessEntity>name,
contact, location etc.

<tModel>meta _| |
. . I G
<businessService> , _ specification of
info on service

/ a service

<bindingTemplate |
>

All content in UDDI 1s expressed in XML. Besides the obvious elements for
companies and services a number of meta-information elements like tModel exist.
A core feature of UDDI 1s the expectation that requester and provider do a
dynamic bind where they agree on service and transport charazcieristics. A local
registry can be downloaded from www.alphaworks.ibm.com

WSDL: The IDL of Web Services

<?xml version="1.0"?> <definitions name="StockQuote"
<schena targetNamespace=http://example.com/stockquote.wsdl [...]
<types><schema targetNamespace="http://example.com/stockquote.xsd" [...]
<element name="TradePriceRequest">
<complexType> <all> <element name="tickerSymbol" type="string"/> </all> </complexType>
</element></schema> </types>
<message name="GetLastTradePricelnput">
<part name="body" element="xsd1:TradePriceRequest"/></message>
<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">
<input message="tns:GetLastTradePricelnput"/>
<output message="tns:GetLastTradePriceOutput"/> </operation> </portType>
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
[..] <operation name="GetLastTradePrice"> [..] </binding>
<service name="StockQuoteService">
<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteBinding">

<soap:address location="http://example.com/stockquote"/> </port> </service> </definitions>

Web Services Description Language (WSDL) is the metadata language of Web Services. It defines how service providers and requesters
understand Web Services. When exposing back-ends as Web Services, WSDL defines and exposes components and lists all the data
types, operations, and parameters used by that service. WSDL provides all the information that a client application needs to build a valid
SOAP invocation that in turn is mapped by the Web Services platform onto back-end enterprise logic. (g@ P.J.Murray, Web Services

and CORBA, CapeClear)

WSDL Elements

*Types— a container for data type definitions using some type system (such as
XSD).

*Message— an abstract, typed definition of the data being communicated.
*Operation— an abstract description of an action supported by the service.
*Port Type—an abstract set of operations supported by one or more endpoints.

*Binding— a concrete protocol and data format specification for a particular
port type.

*Port— a single endpoint defined as a combination of a binding and a network
address.

*Service— a collection of related endpoints.

A WSDL document defines services as collections of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages 1s separated from their
concrete network deployment or data format bindings. This allows the reuse of abstract
definitions: messages, which are abstract descriptions of the data being exchanged, and
port types which are abstract collections of operations. The concrete protocol and data
format specifications for a particular port type constitutes a reusabl§nding.

Request Format of Web Services: SOAP

hello-request

hello-response

<s:Envelope

xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

</s:

<sjBody>

<m:sayHello xmlns:m="urn:Example1'>
<name xsi:type='xsd:string'>James</name>

</m:sayHello>

</4:Body>

nvelope>

<s:Envelope

xmlns:s="http://www.w3.0rg/2001/06/soap-envelope"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-
instance"xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">

<siBody>

<n:sayHelloResponse xmlns:n="urn:Example1">
<return xsi:type="xsd:string">
Hello James
</return>

</n:sayHelloResponse>

</s:Body>

</s:Envelope

SOAP is essentially an RPC protocol with XML. It provides elements for type
marshalling and RPC semantics. A header element contains meta-information
but is optional. See Snell et.al. Programming Web Services... for details. Find a

complete SOAP implementation at apache.org 24

SOAP: performance aspects

d) 4 ™
marshaling d Internet\ effect of de-
- s1ze on i
time transport t ’ marshaling
. ranspo 1
time - SPOTL fime
\)
\
Object to XML XML P4rsing and
convergion transport of XML construdtion of objects
stream over http

The only way to find an answer on possible performance problems is to measure the
effect of individual processing steps or transport times on the overall request time. It
became clear that the internet transport time with lacking QOS has far greater effects on
overall request time than the size and interpretation effort of a textual format. In other
words: it is NOT the XML that is problematic, it is the public network (Internet) that
takes a toll on request/response protocols. (watch Amdahls law in acfion)

Web Services and Firewalls

9%
e

’ SOAP request

Web Service
’ SOAP request > Application |
Server >‘
’ SOAP request I
N
Firewall Web server Object

SCIvVCer

The firewall ,,friendliness* of Web Services has been touted all along. But
firewalls were introduced for a reason: to block protocolls that cannot be tracked
and filtered properly — perhaps because the necessary infrastructure was never
developed — perhaps because the protocols were not intended for the Internet like

CORBA and RMI. But Web Services make no sense without such an
infrastructure. 26

Common Business Processes: eb XML

implement purchase process

CbXML Ic glstl‘y according to specification

retrieve specification

Standard Purchase
Business Process
Specification:

cgister own purchase service

A\

*Operations use company A ‘s purchase

service
*Parameters

*Flow

find service from company A

Without standard schemas for services every company will implement their
business processes differently. Clients will have to deal with many different
interfaces for the same type of service. ebXML i1s a global electronic business
standard and defines a framework for defining, finding and using standard
business process services. see Www.0asis-open.org

27

Web Services Security Standards and

Technologies
* SOAP, WSDL, UDDI: Message Envelope, ¢ WS-Policy (How to express security
Interfaces Definition and Registry requirements)
* WS-Security: Secure Messaging * Secure AssociationsMarkup Language (a
Definitions language to express security related
* WS-Trust: How to get Security Tokens statements)
(issuing, validation etc.) * WS-Reli (Rights management)
* WS-Federation (How to make security * WS-Util (Helper elements)

interoperable between trust domains) » WS-Authorization (express access

rights)

WS-Security is the foundation of Web Services Security. We will take a close look at this
specification and WS-Trust. Soap and WSDL are basic Web Services standards for
messaging. If you are not familiar with them, you can find an introduction here:

http://www .kriha.de/krihaorg/docs/lectures/distributedsystems/webservices/
webservices.html. For a list of all Web Services standards go to:
www.webservicessummit.com) Please NOTE: few of those standards are
available in implementations. E.g. Web Services Enhancemen&%O from Microsoft
covers only basic Web Services security features.

Reliable Messaging

Application Application
1 ayer 1aVeI‘
persistent persistent
messages SOAP msg. with message ID, messages
sequence number and QOS tag

v

receiver message

ordering

requester

A

request and ack.

MUST send
ack!!!

Reliable B2B messages need guaranteed delivery (ack enforced), duplicate
removal (message ID) and message ordering (sequence numbers). SOAP and http
do NOT provide those qualities. Further QOS extensions could be: time to hold
messages, number of retries etc. Proxies are considered transparent.

29

Secure Messages

SOAP envelope

Application - .| Application
Pp . signed ~| APP
layer layer

encrypted
Digital Signatures: Digital Encryption:
XMLDsig XMLEnc

WS-Security goes from channel based security to message (object) based
security. Individual messages can be signed and encrypted. WSDL can advertise
the QOS expected/provided by a receiver. End-to-end security 1s possible across
intermediates. See my internet security lecture for details on WS-Security,
security policies and expressions (SAML, WS-Policy), WS-SecureConversation
and WS-Trust. The idea of the ,,Virtual Organization* — overlay structures over
existing real organizations 1s one of the driving factors here. Today, federation is
more important (see OAuth2) which is expressed in WS-Federation standard.
DAV

Using XML DSIG and XML XENC in SOAP

SOAP envelope
ds:Signature elements

xenc:Referencel ists,

SOAP header ———
xenc:EncryptedKeys

xenc:EncryptedData

signed blocks

SOAP body —

To make DSIG and XENC compatible with SOAP ws-security defines a number of rules,
most of them having to do with the fact that Web Services are explicitely designed for use
with intermediates. Those intermediates can add signatures or encryption to the SOAP
envelop, e.g. to create a chain of trust. The rule here 1s that new signatures or encryption
information is always PREPENDED to already existing information. No encryption of
envelope, header or body tag 1s allowed. Signatures need to respect the right of intermediates
to change the envelope or some header information. Again, these restgiitions are the results
of SOAP processing by intermediates.

Encrypted Keys in WS-Security

<wsse:Security>
<xenc:ReferenceList>
<xenc:DataReference URI=, #foo*/>
</xenc:ReferenceList>
<wsse:Security>
<s:Body>
<xenc:EncryptedData Id=,,foo*>
<ds:KeyInfo>
<ds:KeyName>CN=Walter Kriha, C=DE</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>a5e349cddb1243....</xenc:CipherValue>
<xenc:CipherData>

</xenc:EncryptedData></s:Body>

<wsse:Security> <xenc:EncryptedKey>
<ds:Keylnfo>......
<xenc:CipherData>
<xenc:CipherValue>78ef34abc3412....</xenc:CipherValue>
<xenc:CipherData>
<xenc:ReferenceList>
<xenc:DataReference URI=,, #foo*/>
</xenc:ReferenceList> <wsse:Security>
<s:Body> <xenc:EncryptedData Id=,,foo*>
<ds:KeylInfo>
<ds:KeyName>CN=Walter Kriha, C=DE</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>a5e349cddb1243....</xenc:CipherValue>
<xenc:CipherData>

</xenc:EncryptedData></s:Body>

The message on the left side assumes a shared symmetric key between receiver and
sender. Therefore no key is embedded or referenced. Only the key names are associated
with the encrypted parts. The right side embeds an encrypted key in the message -
probably encrypted using the receivers public key. The key points to $hd encrypted part.

Token based delegated authorization

calender service verifies all 3 scheduler gets token from privacy service which
tokens and allows scheduler to asserts that scheduler respects privacy
change A‘s calender

/ ::/—- <
«— |l
calender scheduler
web service web service
A
requsts token
that allows B to B delegates A‘s
access calender token to scheduler,
ofAina together with his
restricted wa) own token
Y A gives token to B
Owner A " Colleague B

This 1s an example from the roadmap for ws-security. Please note that it depends on
expiration data in the tokens how often A needs to re-issue an access token for B. If B
needs to access the calender frequently it might be better to use endpoint access control
to restrict and control Bs access. See next page. Just extending the expiration dates
causes problems with revocation. 3 §

Secure Association Markup Language

(SAML)
-

me
= =

SNv
AR s e "\.\ optional check with assertion
T issuer if token does not contain
A T~ signatures
request and SAML \'\._
credentials assertions Tl

optional: proof-of-possession step
4._ ...
assertions

SAML allows to EXTERNALIZE all policies and mechanisms with respect to
authentication, authorization and attribute assertion. The access control point needs to
check only the assertions but does not have to implement all these mechanisms. On top of
this, SAML makes all these statements interchangeable between different services because

the format of the assertions is fixed. 34

Coordination and Transactions

* A generic coordination service providing coordination
tpyes, context and protocol (e.g. atomic transactions,
business activities

* A transaction service which covers traditional TA ‘s and
conversational Business Activities.

Loosely coupled services which last a long time cannot use regular locking or do
a complete rollback if something fails. Business Activities comprise several low-
leval atomic TA ‘s but make progress even in case of individual task failures.

35

Transactional Web Applications

% HD :lu Lock seat #5

The travel agency needs to reserve a flight, book a car and a
hotel room for a traveller.

Flights
%HDD lock car #24

o

Rental

cars
|] I
O

Travel
Agency

lock room #47

=

hotel
reservation

The 2-phase commit protocol does distributed transactions. But it does not really fit to the
web world because it requires resource managers to lock resources. On the un-reliable
medium internet this should be avoided. SOAP does not yet specify a transactional
service. OASIS is working on ,,Business Transaction Processing* to support Web
Services Transactions. IBM is proposing a model using ,,tentative* reservation to
overcome the locking problem. V4

Transaction Models

Transaction

/ \

Atomic

* not nested

* short

* tightly coupled business task
* rollback in case of error

* errors: system crash

Activity

* nested tasks

* long running
* loosely coupled business activity
* compensating tasks and activities

* errors: order cancellation etc.

Complete rollback 1s too expensive for long running business activities.
Intermediate results must be visible early — compensating acting try to undo tasks
in case of business errors. Internet site do not like the locking of resources by

external callers...

77
I/

A Coordinator

forward Context
Participant
\ ‘ register indir tl‘
register with Coordinator

create Context

Transaction
Starter

Activation Registration Activation Registration
Coordinator . COOleI.lator
(subordinate)

Activation works like a factory method to create a new Coordination Context.
This context 1s forwarded to participants which register through it either directly
with the first coordinator or with their own coordinator which registers itself as a
sub-coordinator. Protocol and type of coordination are contained in context.

38

Stateful Web Services

wsdl + resource
property description

endpoint reference
including resource
property identificator

get/set operations,
notification registration, | ——*
lifecycle (create/destroy)

endpoint with
get/set methods

v

requestor

Stateful architectures like computational grids need the concept of a resource.
WS-Resource adds this via meta-data descriptions contained in the WSDL and
WS-Adressing schemas. An identifier 1s used to communicate state information
between requestors and endpoints. On top of WS-Resource advanced notification
requests can be built. See: The WS-Resource Framework (Czaikowski, Ferguson

ct.al.)

39

Best Practice for Promoting Scalable Web Services

1. Stay away from using XML messaging to do fine-grained RPC. For example, stay away from a service which returns the
square root of a number. Stay away from a service that returns a stock quote (this is the classic-cited example of a
Web service).

2. Conversely, use course-grained RPC. XML web services usually have to be defined at a coarser granularity than ordinary
software objects. That is, use Web services that "do a lot of work, and return a lot of information".

3. When the transport may be slow and/or unreliable, or the processing is complex and/or long-running, consider an
asynchronous messaging model.

4. Always take the overall system performance into account. Don't optimize until you know where the bottlenecks are, i.e.,
don't assume that XML's "bloat" or HTTP's limitations are a problem until they are demonstrated in your application.

5. Take the frequency of the messaging into account. A high rate of requests might suggest that you load (replicate) some of
the data and processing back to the client. The client occassionally connects to synch-up with the server, and get the
lastest data.

6. Aggregation using replication. There will be Web services which serve to aggregate data from other Web services. One
approach is to perform the aggregation on demand - the services which supply the data are invoked in real time, the
data is aggregated, and returned to a requesting client. Alternatively, all the data from the supplier services may be
retrieved during off-hours in one large, course-grained transaction. Thus, the aggregation is performed in real-time
(rather than trying to retrieve the supplier data in real-time). The later is recommended whereever possible.

this is the result of an interesting discussion at xml-dev. Do you agree?

Other Web Services Architectural Models

Policy Model

! Sernvice Criented Model Rescurce Oriented Model

Action Resounce

s Partially layered on sl

Message Criented Modsl

Representational State Transfer Architecture (REST), SOA and Policies
are models beyond mere messaging. Diagram taken from ,,Web

Services Architecture (w3c) A1

Service Oriented Architecture (SOA)

Beyond WebServices

42

Example

Let's look at my effort on monday to get Wilco's cover of Blue Oyster Cult's Don't Fear The Reaper into my
iPod and posted on my blog.

This effort required to integration of about eight web services, most of which were supplied by individuals,
not businesses.

Web Service #1 - webcasts the Fillmore Show live over the internet

Web Service #2 - Somebody records the internet stream using

Web Service #3 - HappyKev uploades the Bittorrent of the show into etree

Web Service #4 - Wilcobase posts the setlist from the Fillmore show

Web Service #5 - Bloglines shows me the setlist via RSS

Web Service #6 - 1 find the torrent on etree and download it using Azureus

Web Service #7 - I convert the files to MP3 using dbPowerAmp

Web Service #8 - I blog it using Typepad

Taken from http://avc.blogs.com/a vc/2004/11/the architectur.html to show
you web services that work. Most public WebServic es were much simpler
than the interfaces defined in the WS-specifications and used a REST API
on top of this!

43

http://www.wilcoworld.net/roadcase/index.html
http://www.highcriteria.com/

Why UDDI could not work

* central registries of service descriptions

* independent automatic agents searching for services
* machines understanding service descriptions

* machines deciding on service use

* machines being able to use a service properly

* machines being able to construct advanced workflows from different
services

A hype must be pretty big to make people forget about the problems behind
above assumptions. But it gets worse: even 1f you replace machines with
human beings (e.g. for the service decision) UDDI does not work: Too
much 1in services 1s ambiguous, undefined or expressed in different and
incompatible terms — not to forget that the service interface use (order of
calls, meaning of datatypes etc.) is undefined as well.

44

Missing Technology behind UDDI

Meaning of

data types and~_Ontologies
interfaces \

Autonomous

policie

Meaning of
actions

/

Agent

Business
Domain

create request from
WSDL description

knowledge

Trust

Understanding
and matching

of constraints

Risk

Process
Exectution
Languages

Establishme\m\\

Understanding

Flows and
Goals

Not to forget things like business languages which standardize business terms
like contract, sale, customer etc. Generally speaking a ton of meta-data where
missing. Webservices (WSDL, SOAP) merely covered the mechanics of

message exchange.

45

Lessons Learned from WebServices and
CORBA

* Webservices are a low-level concept which need more
semantics

* Workflow has not really been covered by WS and CORBA

* SOA i1s not only about interfaces and interface design. In
the first place it 1s about HOSTING SERVICES. An ounce
of a really available service on the web 1s worth more than
a ton of specifications and interfaces

Many of the concepts now sold under ,,SOA* have been expressed in the
90°s e.g. in the ,,Business System Application Architecture* of the OMG
(Www.omg.org)

40

SOA Core Properties

* Services offer high-level, business type interfaces

* Service Choreography (aka workflow) 1s performed outside services
which allows the combination of services into larger business processes

* A set of semantic standards and technologies allows agents to
understand services and their interfaces (OWL, SAML, Semantic Web

etc.)

* Legacy applications will be wrapped through a service interface and
become available to other companies

* SOA will use Web Service technology at its base

It 1s interesting to see the how the industry seems to shy away from the
term ,,workflow* in this context. Too many projects gone south and too
many unfulfilled promises?

47

SOA Architectural Model

Agent o

H an " OWNS
is EI'I

| resaunca | | FEqL!FElETEgEFI[| | FI-"D.l'IIjEI' BgE'I'I[

realizes OIS
semice description
-
Al ™ has
/ ".II‘I R

f dascrbes

Persdn of
organizalion

EBIEDII:F':E;S

provides \L
Sl estabishes

licy
apphestn P
EUEFILS
! nas
describes Eer-m:e rale
| i
ralxuu‘. a.:-plmrﬂ

o ‘*

o

has periains 1o

s bes
samvice Interace &HUP o about
s choreogr a[:hy,r res IS n
Fiekge nart af
aings —— i
T— Its i
massan:w _ FeELlls in

This diagram from ,,Web Services Architecture* (see resources) shows internal
and external elements of the SOA architecture. Action e.g. is not an externally
visible element. Note the important roles of ,,policy* and ,,sem4gtics*

SOA Design

Bg;l.ness Business B(l)lls;neis
Ject Service Jee
Component / \ Component
Service Choreography Service

This diagram 1s modelled after O.Zimmermann et.al. ,,Elements of a Service-
Oriented Analysis and Design® (see resources). The paper also shows nicely how
flow oriented a SOA really 1s and that a class diagram does not catch the essence
of SOA. A state-diagram performs much better. The authors also note that SOA 1s
process and not use-case driven design. 40

Interface Design

Object interface: can be conversational, accepts transactions,
fast, Object references

Component interface: value objects, transaction border,
relatively fast. Mostly stateless.

Service interface: long running transactions with state in DB.
Compensation Functions. Short process time, long business
TA time. Isolated and independent. Composable to larger
services (choreography) or composed of smaller services
(orchestration). Stateless.

Only objects (classes) are programming language constructs. But a
detailed look at the interfaces reveals that component and service type
interfaces are just a different type of interface model.

50

SOA Blueprint Service Types

* Component Service: atomic operation on a simple object (e.g. DB-access)

* Composite Service: atomic, uses several simple services (orchestration),
stateless for caller.

* Workflow Service: Stateful, defined state changes (state kept in persistent
store)

* Data Service: Information integration via message based request/response
mechanism.

* Pub/Sub Service: typical event service with callbacks and registration.

* Service Broker: Intermediate, rule based message manipulation and
forwarding

* Compensation Service: revert actions (not rollback like)

From the SOA Blueprint of The Middleware Company
(TMC) found in: Soa auf dem Priifstand (see resources)

51

Event-Driven SOA: ESB

SOA

PP I"\ App-8—>¥ hpp 9
'5\ ?»'/ A App App App
%1,_.,,, ‘\ » ‘\“ /
"‘4“!.%’;“'“-6&%:
\ ";‘:“" 3 — |
© e ." ‘:'/ —) App <«—> ESB <—> App
App App App

The concept of an Enterprise Service Bus played a
major role in SOA: The bus was supposed to allow loose
coupling between apps, format conversions,
notifications and pub-sub features.
(from:https://zato.10/docs/intro/esb-soa.html 52

Metal:Automatic Service Composition

Einkiufer Verkaufer
- Bietet Operationen die die setze
Geschaftspartner kennen {H
O - kontrolliert den Prozess Angabotsanf'
setze sefze
{)Angebot CH gemeinsame Bestellung O
setze «—— 1 Prozessbeschreibung P
als setze
-O Bestellbest. : .
H mittelnder Eingangsbest.
) setze Web Service OH
Rechnung
A A
WSDL WSDL
% A
\\ 4
\ ff
Semant. . Semant. /
Technologien Integrationssystem Technologien

- Bedeutung der WSDL-
Operationen
- Prozessbeschreibung

- Bedeutung der W5DL-

Operationen

- Prozessbeschreibung

Diefenthal/Fraunhofer IAO)

An e-procurement example using semantic and generative technologies (Christoph

53

SOA: Critical Points

Layered Architectures typically leavesaikid
orchestration to a central manager (ESB)
where business processes are coordinated
through spaghetti code (BPEL)

ervice reuse multiplies our dir3
and especially indirect
which creates

My new .

EERGERGET
wants to reuse
other services

I.',]. Clip slide

Jeppe Cramon, SOA and Event Driven Architecture (SOA 2.0)
http://www.slideshare.net/jeppec/soa-and-event-driven-architecture-soa-2(

54

Meta to the Rescue...

>‘ Business Business Processes, Business Data, Business Rules, Organization
Model (CIM)
U’ Business -
Architecture
2 Model o o [NEEEEEE Business
o (BAM) Business Goals Processes
T I==H 1 | 5 |
o Capabdtes e Archilechres E -
-= Service Contracts and Choreogra phwes & %
z Mode| to MoﬂﬂliMZM_llTrmslmim g ;
| 43
ure —
Model e g g
4 (SAM) S Service Interfaces ; § -
and Messages . a
E ///gi‘r‘::grm
Se
© O asone |
o Software Components
m Mode ! 1o Text (M2T) lTram.iormahon
Platform- Clem 2
Specific Cloud, Web Senvces, JEE, MAS, P2P/Gnid, SWS Clem i
SoaML Ty Model {ml (] § 28
SHAPE

B. Elvesater, “Service Modelling with SoaML”, tutorial at the SSAIE 2010
http://www.slideshare.net/elvesater/be-ssaie-2010soamlpresentation

SOA vs. Microservices: Service Taxnonomy

business services

client requests
messaging middleware _ ' :
. : api layer
enterprise services ES

application services As infrastructure services [

functional infrastructure
Figure 2-2. SOA taxonomy service service

Figure 2-1. Microservice service taxonomy

SOA services are much more detailed and owned by

different groups. See: Mark Richard, Microservices vs.
SOA (Oreilly, sponsored by NginX)

56

SOA vs. Microservices: Service Granularity
st -
e
st -
i ——
SOA services are more often transactional and therefore larger than

MS. MS use eventual (BASE) technologies (eventual consistent
stores, event-sourcing approaches) which are NOT AICID!

No transactional
bracket, different
DBs

Distributed
Transaction
(costly, fragile)

Shared enterprise
service
(transactional)

Service Arc.: Orchestration vs. Choreography

SOA prefers Microservices prefer
orchestration due to choreography which can
higher level middleware lead to highly connected
components and dependent systems

Mark Richard, Microservices vs. SOA (Oreilly, sponsored by

NginX)
58

SOA vs. Microservices

- much more enterprise
architecture with
middleware
(messaging) , service
layers and ownership
concepts

- more contract
decoupling using meta-
data and messaging
middleware

- “share as much as
possible” approach

- big services are
transactional

- simple API gateway,
teams own infrastructure
and business services

- no contract decoupling
- “share as little as
possible” approach

- services offer only
BASE consistency
(eventual)

59

Representational State Transfer
(REST)

60

RESTful Web — against the RPC Model

-The WEB 1s based on representation of resources
using URIs, Web Services create private, non-standard
ways of information access

-The envelope paradigm does not add any value over
the generic http get/put/post

-RPC mechanisms are not suitable for the WEB. Some
extensions to get/put/post might be necessary though
(going 1n the direction of tuple-space systems)

This is a hot topic currently: ask yourself whenever you think about building a web
services: could it be done with just an http get or post? REST btw. stands for
Representational State Transer Architecture, a term coined by Roy Fielding, the father
of http. see resources on REST. But in later versions Web Services have been extended

through a document centric model as well.]

The Web’s Architectural Style

*Client-server
*Uniform interface
*Identification of resources (URI)
*Manipulation of resources through representations
*Self-descriptive messages (Meta-data, header, convers.)
*Hypermedia as the engine of application state
(HATEOAS): Response contains actionable links
*Layered system (Intermediaries for caching, security, LB)
*Cache (Declare the cacheability of a response)
*Stateless (Clients need to provide context/state)
*Code-on-demand (Server can send scripts, flash, applets etc.)

from: M.Masse, REST API Desing Book
62

REST Maturity Model

See resources: Richardson, Fowler 63

REST Level 0: RPC

Client Service

POST /appointmentService
<openSlotRequest doc = “Webster”, date=*12 12 2020 />

<openSlotList doc="Webster”, time="15.00-16.00” date="12 12 2020">

POST /appointmentService
<appointmentRequest PatientID="WSmith”,doc="Webster”, time="15.00-16.00"
“date=12 12 2020 />

OK: <appointment doc="Webster”, time="15.00-16.00" date=" 12 12 2020">
OR: <appointmentRequestFailure doc="Webster”, time="15.00-16.00 date="
12 12 2020”>

After (modified): Fowler, RMM. This looks like regular RPC to one endpoint. The appointment
made does not show up as a resource and is not accessible without a ndg4RPC function

REST Level 1: Resources

Client Service

POST /doctors/webster/slots
<openSlotRequest date="12 12 2020”/>

<openSlotList appointment= “14” doc="Webster”, time="15.00-16.00" date="
12 12 2020”/>

POST /doctors/webster/slots/14
<appointmentRequest patient="WSmith” />

OK: <appointment doc="Webster”, time="15.00-16.00" date=" 12 12 2020">

OR: <appointmentRequestFailure doc="Webster”, time="15.00-16.00 date="
12 12 2020”>

After (modified): Fowler, RMM. Function names and parameters have been turned

into resources. Appointments do have an identity now and anybodg 5can get/post
something to an existing appointment

Rest Resource Archetypes

* Document: Fields and links (base resource, noun, create:POST)
* Collections: Containers maintained by server with URI
generation (noun, POST)

* Stores: Container elements maintained by client with “put” and
without URI generation on server side (noun, insert/update:PUT)
* Controllers: Procedures (verb, POST)

* URI Path Design: Reflects resource model

* Variable path segments with query terms

After: M.Masse, REST API Design Book
66

REST Level 2: Http Verbs

Client Service

GET /doctors/webster/slots?date=12 12 2020&status=open

<openSlotList appointment= “14” doc="Webster”, time="15.00-16.00" date="12 12 2020”/>

POST /doctors/webster/slots/14
<appointmentRequest patient="WSmith” />

201 created <appointment doc="Webster”, time="15.00-16.00" date=" 12 12 2020”>
OR: 409 conflict <openSlotList appointment= “14” doc="Webster”, time="16.00-17.00”
date=" 12 12 2020”/>

After (modified): Fowler, RMM. It is now crucial to use the correct verb. GET is
idempotent and creates cachable resources. The response codes have to be used

correctly, in this case to indicate a new resource or a conflict. Do go} use OK codes
and report an error in the body.

REST Level 3: HATEOAS

Client Service
GET /doctors/webster/slots?date=12 12 2020&status=open

<openSlotList appointment= “14” doc="Webster”, time="15.00-16.00" date="20201212">
<link rel="/linkrels/slot/book” uri = “/slots/14”/>

POST /doctors/webster/slots/14
<appointmentRequest patient="WSmith” />

201 created

<appointment doc="Webster”, time="15.00-16.00" date="20201212">
<slotid ="14" >

<patient id = "wsmith"/>

<link rel = "/linkrels/appointment/cancel" uri = "/slots/14/appointment"/>
<link rel = "/linkrels/appointment/addTest" uri = "/slots/14/appointment/tests"/>
<link rel = "self" uri = "/slots/14/appointment"/>
<link rel = "/linkrels/appointment/changeTime" uri = "/doctors/webster/slots?date=20201212(@status=open"/>
<link rel = "/linkrels/appointment/updateContactInfo" uri = "/patients/wsmith/contactInfo"/>
<link rel = "/linkrels/help" uri = "/help/appointment"/>
</appointment>

After (modified): Fowler, RMM. Responses now encode optional actions which
can be invoked by the client. Services can change URIs without breaking clients.
The rel attibute describes the semantics behind the URI link. 63

../../../../../../doctors/webster/slots%3Fdate=20201212@status

RESTful Web: CRUD like Message Semantics

Representation

\4

Requestor Resource

GET -> Read (idempotent, does not change server state)
POST —> Create resource on the server

PUT -> Update Resource on the server (??)

DELETE -> Delete Resource on server

Is this separation of updates and reads something new? Not by far. Bertrand Meyer of OO fame
calls this a core principle of sound software design and made it a requirement for his Eiffel
programming language. He calls it “’command-query separation principle’:

“Commands do not return a result; queries may not change the state — in other words they satisfy
referential transparency” B. Meyer, Software Architecture: Object Oriented Versus Functional
[Meyer]

40
U7

RESTful Web Features

Four strands that make a servive RESTful:

* explicit use of http protocol in a CRUD like manner
* stateless design between client and server

* meaningful URIs which represent objects and their
relationships in the form of directory entries (mostly
parent/child or general/specific entity relations)

* use of XML or JSON as a transfer format and use of
content negotiation with mime types

All state change is reflected by a change in representation. Resources are manipulated
through a very simple and uniform interface (CRUD like) and through the exchange of
representations. This is how the WWW works. A subset of Web Services are REST-
compliant. From A.Rodriguez, see resources.

70

REST: critical points

* At-least-once delivery of requests?

* At-most-once delivery of requests?

* Transactions (optimistic, ETAG)?

* (Federated) Security with bearer tokens?

* Secure delegation and backend security?

* Performance over http?

* Too many round-trips? (Orchestration API)

When new requirements come along, developers face a choice: Should we create a new
endpoint and have our clients make another request for that data? Or should we overload
an existing endpoint with more data?Developers often choose the 2nd option because
it’s easier to add another field and prevent a client-to-server round trip. Over time, this
causes your API to become heavy, kludgy, and serve more than a single responsibility

From: https://medium.com/paypal-engineering/graphql-a-success-story-for-paypal-
checkout-34821724{b53

There are solutions for those problems, but for inter service calls (see microservices
later) it is often more convenient to use an RPC protocol (thrift, pratdcol buffers etc.)

Post REST?

® Messaging and Eventing - This approach is all over, and I mean all over, the cloud infrastructure that I
work on. The idea is you get a request, you validate it, maybe you do some computation on it, then you
drop it on a queue (or bus, or stream, or whatever you want to call it) and forget about it, it’s not your
problem any more.

1

* Orchestration - This gets into workflow territory, something I’ve been working on a lot recently.
Where by “workflow” I mean a service tracking the state of computations that have multiple steps, any
one of which can take an arbitrarily long time period, can fail, can need to be retried, and whose behav
ior and output affect the choice of subsequent output steps and their behavior.

* Persistent connections - Back a few paragraphs I talked about how MQ message brokers work, main
taining a bunch of nailed-up network connections, and pumping bytes back and forth across them. It’s
not hard to believe that there are lots of scenarios where this is a good fit for the way data and execution

want to flow.

* GraphQL: control plane in REST, data plane in other technologies

https://www.tbray.org/ongoing/When/201x/2018/11/18/Post-REST
72

GraphQL: a Query-API

query {
User (id: “er3tgd439frjw”) {
name
posts {
Litla

}
followers(last: 3) {

name
}

?
}

HTTP POST Q)
-

{
“data”: {
“User”: {

“name”: “Mary”,

y

*mosts™: [

{ title: “Learn GraphQL today” }
Is
“followers”: [

{ name: “John” },

{ name: “Alice” 1},

{ name: “Sarah” },

]
}
}
}

Using GraphQL, the client can specify exactly the data it needs in a query. Notice that the
structure of the server's response follows precisely the nested structure defined in the query.

Diag from: https://www.howtographql.com/ 73

GraphQL Properties

- No over/underfetching

- Fewer requests

- One endpoint with resolvers

- Data and query syntax identical
- Typed to avoid mistakes

- Federated servers possible

- Danger: huge queries possible (see:
https://blog.acolyer.org/2018/05/21/semantics-and-co
mplexity-of-graphql/

for an polynomial time algorithm)

74

https://blog.acolyer.org/2018/05/21/semantics-and-complexity-of-graphql/
https://blog.acolyer.org/2018/05/21/semantics-and-complexity-of-graphql/

MicroServices

Technology and Eco-System

75

Forces/Context

* Ultra large-scale sites require efficient horizontal scaling
* Unicorn companies need to develop new features
extremely fast with independent teams

* Unicorn companies need to deploy new features
extremely fast (competition, experiments)

* Unicorn companies need to offer an API for network
effects

Q Fat applications running on
/ application servers do not fit into
this context!

76

Scalability Problems of Monolithic
Applications

Deployment Hard to scale

as a whole API
only

Hard to Developers

scale dependent

central DB on general
release plan

77

Solution: Partitioning/De-Composition

A

A
MS
Data oy

Customers /\
@
Functions

>

78

MicroServices: Vertically Partitioned Functions

Individual
deployment (A/B Quickly

test easy) scalable API
Independent DBs
teams and independent
releases (often
anyway due

i to sharding) i

79

Eco-System: Vertically Partitioned Teams
Tribe Tribe

/&ﬁgmf /8 8888
REQ
GUI Chamer[QS §} crameer| | R[5

Ch,m,,[g %& |

After: Henrik Kniberg & Anders Ivarsson, Scaling Spotify

BUS

DB
OPS

Eco-System: Technologies and Processes

- Continuous integration/deployment (experiments)
- Fully automated build and deploy

- Free choice of languages

- Continuous monitoring (ELK etc.)

- REST APIs plus RPC tools

- Containers over VM: small MS waste VM 1nstances
- DevOps: teams responsible for operations

- Site-Reliability Engineers (SRE)

- No distributed transactions

- Federated Security

- Fault-tolerance patterns

81

MS Deattl Star

@

/|

X Cassandra

V|
bad memcached
A

Start Here |
) fa
'
- \'6
From:Aquan Cockcroft, Globally Dlstrl.buted Cloud VETFLI
Applications at Netlix (Uber: 2000 MS 1n 1.5 years!)

Monitoring/Tracing

6 me (aeync)
Qeenvice HTTP 5 me (seync)
40 me (async)
Custom (async)
gps-tegt-usca

HTTP 50ms (2 %)

2161 me (B4.4 %)

merchweb-usts

HTTP 63 me (seync)

:

HTTP 63me (2.5 %)

HTTP 287ms (11.2 %)

SimpleDBE port &(

From:Adrian Cockcroft, Globally Distributed Cloud
Applications at Netlix. Needs fully automated everything

MS Security: Bearer Tokens

Microservices

KKK H KX KK

Pivotal Cloud Foundry

Backend security and secure delegation are needecé!4

MS Security: OAuth?2

Tier 1 and 2 microservices - stateless
Tier-2-

External Tier-1-
Consumer application | OpenAM J service

Request protected app

‘ 302 redirect — Auth server ‘ {username,password} + consent

I 302 redirect — w/ auth code ‘
{Auth code}

{access token, refresh token, ID Token
metadata}

{Client Credentials}

Request Token

{access token, refresh
token, metadata}

mer Access Tokenconsumer Stateless token validated by
microservice

{data payload}
{data payload} Response

From: D.Ferriera, Authentication and Authorization Architecture
for Microservices, Qcon 2016]5

Main MicroServices Patterns

Microservices architecture: loosely coupled services and teams
API gateway: Facade to fine-granular services

Client-side discovery: provided by MS chassis (e.g. spring boot)
Server-side discovery

Service registry:services register themselves during startup

Self registration: by chassis

Service instance per Container: scales better than VM per service
Serverless deployment: see nanoservices below

Database per Service: no touching other MS database..
Event-driven architecture: programming without a stack...
Event sourcing: record change events in event store

CQRS: separate update and idempotent reads (eventual...)
Transaction log tailing:follow transaction log for changes
Database triggers: put events in events table after changes
Application events

After: C.Richardson,
http://microservices.10/patterns/ 36

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/deployment/service-per-container.html
http://microservices.io/patterns/deployment/serverless-deployment.html
http://microservices.io/patterns/data/database-per-service.html
http://microservices.io/patterns/data/event-driven-architecture.html
http://microservices.io/patterns/data/event-sourcing.html
http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/transaction-log-tailing.html
http://microservices.io/patterns/data/database-triggers.html
http://microservices.io/patterns/data/application-events.html

Event Sourcing/CQRS

MSI MS2

4 4+ = 177\
—Getevents(id7)
-

After: Building and deploying microservices with event
sourcing, CQRS and Docker (QCONSF 2014) fro§17Chris
Richardson

Caveats

There’s no such thing as a microservices architecture, there is software
architecture. The size and granularity of services are a dimension of the
solution, not a given of the problem. To dictate it from the start is reductive
and only shifts complexity elsewhere

https://vlfig.me/posts/microservices

88

Project-Build-Deployment Models

Project Model Build DAG Deployables Deployment Model

Project Model Deployment Model
—mm—(g) -
N/
@ N @ Build DAG
—mm—) @ A
"/ & B
£ N:M =
"’ RS
\

Define dependencies on several layers. Compile time dependencies are safer
than runtime dependencies.

https://vlfig.me/posts/microservices. Also:
https://randalldavis.github.io/microservice/testing/2017/06/05/microservice-
edges.html RO

https://vlfig.me/posts/microservices

Eventual Consistent Data

Scenario:
1. User created
2. Shopping Cart created

------ User does not yet have the cart -----------
What should clients do in that case? Repeat request?
Which error status should be used?

3. Shopping Cart added 1n User

After: Building and deploying microservices with event
sourcing, CQRS and Docker (QCONSF 2014) fro%Chris
Richardson

Critical Points

* Cross-Concerns: Transactions, Security, Performance,
Scalability: SRE’s to the rescue?

* VMs too big for small services with low throughput

* Maintenance of large numbers of services (Netflix death
star, Uber:2000 MS 1n 1.5 years)

* Monitoring complex due to large number of independent
services (correlation?)

* Different languages and technologies used

* Danger of new central bottlenecks (eventstore?)

* REST often not the best API model and transport

* Distributed commits are “eventual consistent” and not
allowed to get lost!

91

Photo Site Example

https://mariadb.com/resources/blog/how-create-microservices-and-set-
microservice-architecture-mariadb-docker-and-go

92

Refactoring MS-Architectures

Edge Layer

Prasentation
Layer

Product
Laver

Figk3: Layered Architecture

Backend-for-frontend, reducing round trip times, avoiding coupling,
better languages and protocols, gRPC, domain services etc.
https://eng.uber.com/gatewayuberapi/ 93

Serverless Computing

94

Serverless Computing (Aka FaaS,
NanoService etc.)

Serverless will fundamentally change how we build
business around technology and how you code; Containers
are important but ultimately invisible subsystems and this 1s
not where you should be focused.

Todd Hoff, highscalability.com

95

What Is Serverless?

A cloud-native platform for short-running, stateless computation

And event-driven applications which scales up and down instantly and automatically
and charges for actual usage at a millisecond granularity (Stephen Fink, IBM defines
serverless at @ServerlessConf London, 28™ Oktober 2016)

* Decoupling of computation and storage; they scale separately and are priced
independently.

* The abstraction of executing a piece of code instead of allocating resources on which to
execute that code.

* Paying for the code execution instead of paying for resources you have allocated to
executing the code.

(Cloud Programming Simplified: A Berkeley View on Serverless Computing, Eric Jonas

ct.al.) 96

Stateless

- Where 1s config information? Dummy class file in classpath?
- No memory in function

- “mostly stateless Java VM™ (static class initializers...)

- needs stuff in persistent storage (like s3): change mgt.

- hypercomposition 1s hard to do

97

trigger

Serverless Platform

—p

function()

store

Customer visible: RAM/CPU
paid, autoscaling, debugging
difficult, unreliable latency

 J

Lahguag
nvironm.

Container

VM

Q

w

Invisible to customer:

- Coldstart problems

- Resource allocation

- Large runtimes needed
Future: Micro VM (firecracker)
Library OS etc.

98

OpenWhisk Runtime

* microservices deployed in docker containers

* open-source system middleware

* NoSQL (CouchDB) persistence

Master VM Slave VM

controller

Edge VM

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28™ Oktober 2016

99

OpenWhisk Controller
Post request to execute to queue in

Master VM Why ?
m * High throughput fault-tolerant queues

* Point-to-point messages via topics

load data * explicit load balancing
balancer models

Aaster
kafka couchDB spray consul Master VM
SDK SDK DSL SDK

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28™ Oktober 2016

100

OpenWhisk Invoker

Container manager

User action containers

yet
stem cell
kafka couchDB docker consul
SDK SDK utilities SDK \\)
r code
A akka actors
bound to ted
scala user action)

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28™ Oktober 2016

101

OpenWhisk Serverless Feed Action

logical architecture of a github feed service

serverless feed action
main (params) { O GitHub
S e

params.lifecycle ==
Create

Read

Update

Delete
}

Stephen Fink, OpenWhisk talk at @ServerlessConf London,
28™ Oktober 2016

wsk trigger create

102

Amazon AWS Examples

Example: Analysis of Streaming Social Media Data

Lambdais
triggered

i NOTLTE_P_’— — =ﬁ= Il Social media trend data
—_ — [:I @ immediately available for
¥REINVENT I~

business users to query

KINESIS DYNAMODB
Social media stream is Lambda runs code that generates hashtag
loaded into Kinesis in real-time trend data and stores it in DynamoDB8

Example: Sensors in Tractor Detect Need for a Spare Part and Automatically Place Order

Lambda is
triggered
- f
e ©)
O o 0
KINESIS
Tractor sensars send Lambda runs code to detect trends in sensor data, identify
data to Kinesis anomalies, and order replacements for faulty parts

https://www.youtube.com/watch?
v=eOBq h40J4&feature=youtu.be 103

The Serverless Bubble?

SELF-HEALING SERVERLESS APPLICATIONS | PG3

The Reality:
AWS Lambda invokes your code-enlywhen
needed and autematically scales-to support the

rate;of incoming requests-witheut requiring you

to.configure anything. There is-ne limitsto the

number of requests your-cede can handle.

AWS | LAMBDA FEATURES-RAGE

https://www.jeremydaly.com/takeaways-from-serverlessnyc-2018/
104

Serverless Issues

- countless small IAM rules

- coupling with less scaleable components

- coldstart

- Unclear bug handling (dlq, rquest order, wrapper)
- Stateful functions

- Limits everywhere

- New testing concepts needed

- high costs when waiting for something

https://www.jeremydaly.com/takeaways-from-serverlessnyc-2018/

105

The State of Serverless

Application | Description Challenges Workarounds Cost-performance
Real-time On-the-fly Object store too Function-to- 60x faster, 6x
video video slow to support function cheaper versus
compression | encoding fine-grained communication VM instances.
(ExCamera) communication; to avoid object
functions too store; a function
coarse grained for | executes more
tasks. than one task.
MapReduce | Big data Shuflle doesn’t Small storage Sorted 100 TB
processing scale due to object | with low-latency, | 1% faster than
(Sort stores latency and | high IOPS to VM instances,
100TB) IOPS limits speed-up shuffle. | costs 15% more.
Linear Large scale Need large Storage with Up to 3x slower
algebra linear problem size to low-latency completion time.
(Numpy- algebra overcone storage high-throughput 1.26x to 2.5x
wren) (S3) latency, hard | to handle smaller | lower in CPU
to implement problem sizes. resource
efficient broadcast. consumption.
ML ML training | Lack of fast Storage with 3x-5x faster than
pipelines at scale storage to low-latency, high | VM instances, up
(Cirrus) implement IOPS to to 7x higher total
parameter server; implement cost.
hard to implement | parameter server.
efficient broadcast,
aggregation.
Databases Primary Lack of shared Shared file 3x higher cost per
(Serverless state for memory, object system can work | transaction than
SQLite) applications | store has high if write needs are | published TPC-C
(OLTP) latency, lack of low. benchmarks.

support for
inbound
connectivity.

Reads scale to
match but writes
do not.

*Unreliable latency
*Functions not directly addressable

*Poor support for standard com. Patterns (e.g.
batching)

*1 CPU/function
*Limited lifetime

*Debugging/tracing/monitoring
hard/impossible (dead letter box)

*Autoscaling dangers (cost, time)

*Storage systems not good for small
objects/calls (expensive/slow)

*No fine-grained coordination

*See the Berkeley Serverless Report
(Literature)

Serverless Microservice Patterns

- Scalable Webhook
- Gatekeeper

- Internal API

- Internal Handoff
- Aggregator

- Notifier

- FIFOer

- Streamer

- Router

- State Machine

- ¢tc.

Watch out for
prices, latencies,
failure handling

(DLQ)

https://
www.jeremydaly.com/
serverless-microservice-
patterns-for-aws/

107

Even smaller: Isolates

COCAEAREABEM ®
G]G]G](’D[ﬂ User code
G GLGLO[G[GIGOGGG]O)

@® CAAGAAAEABD®
GEACEARRE®
GEOOCEARRE®

m mmm Process overhead
OLO[GIOTO[GIO]0
COERBEE®

Virtual machine Isolate model

This goes in the same direction as library operating
systems. The isolation concept is by controlling references
in the compile process (object capabilities? Like
Singularity?). Multi-tenancy!!

https://blog.cloudflare.com/cloud-computing-withgyfgcontainers/

New MicroVM for Functions

Firecracker Firecracker Firecracker Firecracker
Orchestrator MicroVM 1 MicroVM 2 MicroVM n
I Guest I Guest I Guest I

File
Block
Device

Host Zone

Network Bridge

host user space

host kernel space

host

S1ze and startup time are essential for serverless computing. Firecracker,
a new — Rust-based — MicroVM (fork of CromiumOs VM).

Diag. By David Bryant, 109
httos:// www.1infoa.com/news/2018/12/aws-firecracker

A Function Market?

The future of software development will be lots of lambda functions consumed from a marketplace, stitched
together with some new capability. Waste will be reduced, bias (i.e. custom building something which is already
well crafted) will start to disappear and we get all that other good "financial development" stuff the last post
covered. Hurrah!

So when I look at my trading system, then as time goes on then not only will more and more of the components be
provided by the AW'S marketplace but if AWS is playing an ILC game then many will become industrialised
components provided by AWS itself. The marketplace will just be future potential AWS components and on top of
this, all the novel exciting stuff (which is directly giving early warning to AWS through consumption data) is just
future market components. I've shown an example of this in the map below.

The benefits to consumers i.e. those trying to build stuff will be overwhelming. Amazon will continue to accelerate in
efficiency, customer focus and apparent innovation despite the occasional gnashing of teeth as they chew up bits of the
software industry. Have no doubt, you can use this model to chew up the entire software industry (or the duplicated
mess of bias which calls itself a software industry) and push people to providing either components sold through the
marketplace or building actually novel stuff.

Now most executives especially in the software industry will react just as they did with cloud in 2006/07 by trotting out
the usual layers of inertia to this idea. It'll never happen! This is not how software works! It's a relationship business!
Security! Prior investment! Our business model is successful!

Sitmon Wardley, blog.gardeviance.org/2016/11/amazon-1s-eating-
software-which-1s.html.

110

Resources (1)

xml-dev: mailing list for XML developers. High traffic site. Had a
good discussion on XML-RPC performance lately

Security for Web services, Raghavan Srinivas,
http://www.sun.com/developers/evangcentral/totallytech/Warsaw/Secu
rityWarsaw.pdf

111

Resources (2)

Programming Web Services with SOAP, J.Snell et.al., O
‘Reilly 2002.

www.oasis-open.org , Portal for eb XML and other XML
schema definitions. Work on business transactions over
web-services.

Global XML Web Services Architecture, Microsoft paper
October 2001, www.gotdotnet.com (.net portal for web
services)

Michael Stal, Web Services im Uberblick,
Objectspectrum 7/8 2001

www.uddi.org, portal for UDDI.

112

Resources (3)

The IBM UDDI registry:
http://www.ibm.com/services/uddi

Microsoft's UDDI registry: http://uddi.microsoft.com

Andre Tost, UDDI4J lets Java do the walking. Good
introduction to the concepts behind UDDI

Steve Vinoski, Web Services and Dynamic Discovery,
Article on webservices.org about the real difficulties with

ontologies and automatic understanding. Yes, Steve is one
of the fathers of CORBA and IONA s chief architect.

P.J.Murray, Web Services and CORBA, CapeClear. Good
explanation of the mapping problems when exposing
CORBA services via Web Services.

113

Resources (4)

Dave Winer et.al., A busy developers guide to SOAPI1.1, from
www.soapware.org, bare bone explanation of the most important
features. Does not cover SOAP with attachements etc.

Web Services for Remote Portals (WSRP),
http://www.oasis-open.org/committees/wsrp/ , a new approach to re-use
services WITH their GUI. Headed by Thomas Schaeck, IBM Boblingen

the RESTwiki on http://conveyor.com/RESTwiki/moin.cgi

Principled Design of a modern Web Architecture, R. Fielding,
http://www.cs.virginia.edu/~cs650/assignments/papers/p407-fielding.pdf

Alex Rodriguez , RESTful Web services: The basics, IBM , 06 Nov 2008
http://www.ibm.com/developerworks/webservices/library/ws-restful/inde
x.html?S TACT=105AGX54&S CMP=B1113&ca=dnw-945

114

Resources (9)

James McCarthy, Reap the benefits of document style Web services
http://www-106.1bm.com/developerworks/library/ws-docstyle.html?n-ws-
6202 . A nice explanation of document style web services and when to use
them. E.g. if there is NO pre-existing rpc-service you might be better of
designing your communication in document style right away. Better for
asynchronous processing as well. And coarse grained which is better in many
cases of dist-sys as we have learned.

The WS-Resource Framework V1.0, Czaikowski, Ferguson et.al. describes the
addition of statful resources to web services by using meta-data and identifiers.
Read the grid papers to understand the need for it.

Security for Grid Services, Von Welch et.al. Describes the security needs of
virtual organizations.

Martin Brown, Building a grid using Web Services standards Part1-6.
www.ibm.com/developerworks Shows a distributed movie serving application
built with web services. Looks a bit like napsters design. Shows how similar
p2p and grid applications really are.

REST in Rails: http://www.b-simple.de/documents

115

SOA Resources (1)

Olaf Zimmermann et.al., Elements of Service-oriented
Analysis and Design, 6/2004, www.ibm.com/developerworks

Al Arsanjani, Service-oriented modeling and architecture,
11/2004 www.1bm.com/developerworks

Guido Laures et.al., SOA auf dem Priifstand, ObjectSpektrum
01/2005. Covers the new benchmark by The Middleware

Company for SOA implementations

David Booth et.al, Web Services Architecture — W3C
Working Group Note 2/2004. A very good introduction which
explains the architectural models nicely. Covers messaging,
resources, SOA and policies. Lots of interesting links to
additional standards.

116

SOA Resources (2)

WS-Policies, Standard for matching and merging of service policies.
Note that the standard is conservative and does not require advanced
merging when basic types differ

Christoph Diefenthal, Automatic composition of business processes
between companies - using semantic technologies and SOA. (Thesis
work at the HDM and Fraunhofer IAO). Excellent work showing
web intermediates integrating business services automatically.

http://www.oreillynet.com/pub/wlg/3017, Tim O‘Reilly on what
makes open source different and empowering. Very good.

http://www.onjava.com/pub/a/onjava/2005/01/26/soa-intro.html
shows how JINI‘s dynamic service lookup and call features are
offered by SOA 1n a language independent way

117

REST Resources

Martin Fowler, Richardson Maturity Model

Martin Fowler, Enterprise Integration using Rest

Richardson, Leonard, and Sam Ruby. RESTful Web
Services. Sebastopol: O’Reilly Media, Inc., 2007.

Mark Masse, REST API Design Book, O’Reilly Media

118

Serverless Computing Resources

Swardley on Why the fuss about serverless?
https://medium.com/@swardley/why-the-fuss-about-server
less-4370b1596da0

Videos from ServerlessConf, London:
https://www.youtube.com/channel/UCqlcVgk8SkUmve4K
waxSlgw

Old Programmers and New Programmers Can Learn New
Tricks - Donald Ferguson https://youtu.be/vWyeS aAZmo

Amazon AWS Lambda:
https://www.youtube.com/watch?v=eOBq h40J4&featur
e=youtu.be

Guide to serverless technologies,
https://thenewstack.i0/ebooks/serverless/guide-to-
serverless-technologies 119

https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://youtu.be/vWyeS_aAZmo
https://www.youtube.com/watch?v=eOBq__h4OJ4&feature=youtu.be
https://www.youtube.com/watch?v=eOBq__h4OJ4&feature=youtu.be

Serverless Computing Resources

Swardley on Why the fuss about serverless?
https://medium.com/@swardley/why-the-fuss-about-server
less-4370b1596da0

Videos from ServerlessConf, London:
https://www.youtube.com/channel/UCqlcVgk8SkUmve4K
waxSlgw

Old Programmers and New Programmers Can Learn New
Tricks - Donald Ferguson https://youtu.be/vWyeS aAZmo

Amazon AWS Lambda: https://www.youtube.com/watch?
v=eOBq h40J4&feature=youtu.be

120

https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://medium.com/@swardley/why-the-fuss-about-serverless-4370b1596da0
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://www.youtube.com/channel/UCqlcVgk8SkUmve4Kw4xSlgw
https://youtu.be/vWyeS_aAZmo

MicroServices Resources

Life Beyond Distributed Transactions,
http://www.1cs.uci.edu/~cs223/papers/cidrO7p15.pdf

MicroServices Patterns: microservices.io (Chris
Richardson)

Graham Lea, Distributed Transactions: The Icebergs of
Microservices, Posted on August 30, 2016,
http://www.grahamlea.com/2016/08/distributed-
transactions-microservices-icebergs/

121

	Web Services
	Slide 2
	Slide 3
	Overview
	Goals
	Slide 6
	Slide 7
	What are Web Services?
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	WWW: from GUI driven to B2B
	Web Services Components
	Slide 18
	The Web Services Architecture
	Service Discovery (1): UDDI
	Service Discovery (2): UDDI content
	WSDL: The IDL of Web Services
	WSDL Elements
	Request Format of Web Services: SOAP
	SOAP: performance aspects (2)
	Web Services and Firewalls
	Common Business Processes: ebXML
	Web Services Security Standards and Technologies
	Reliable Messaging
	Secure Messages
	Using XML DSIG and XML XENC in SOAP
	Slide 32
	Scenarios (5): Token based delegated authorization
	Secure Association Markup Language (SAML)
	Coordination and Transactions
	Transactional Web Applications
	Transaction Models
	A Coordinator
	Stateful Web Services
	Best Practice for Promoting Scalable Web Services
	Other Web Services Architectural Models
	Service Oriented Architecture
	Example
	Why UDDI could not work
	Missing Technology behind UDDI
	Slide 46
	Elements of SOA
	SOA Architectural Model
	SOA Design
	Interface Design
	SOA Blueprint Service Types
	Slide 52
	Automatic Service Composition
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	RESTful Web – against the RPC Model
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	RESTful Web: CRUD like Message Semantics
	RESTful Web Features
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Resources (1)
	Resources (2)
	Resources (3)
	Resources (4)
	Resources (5)
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

