
Theoretical Foundations

 Concepts and Theorems in Distributed
Computing

Walter Kriha

2

Goals

The goal is to give students a sound theoretical foundation to
understand complex distributed systems. These systems
differ significantly from local forms of computing.

The influence of DS theorems can be subtle but there is no large scale
distributed design without those.

3

Overview

Basic Concepts
Distributed Systems Fallacies
Latency
Correctness and Liveness
Time, Ordering and Failures
The Impossibility of Consensus in Async. DS (FLP)
The CAP Theorem

Failures, Failure Types and Failure Detectors
Time in Distributed Systems
Ordering and Causality
Algorithms for Consensus in DS
Optimistic Replication and Eventual Consistency

4

Basic Concepts

5

The Eight Fallacies of Distributed Computing

“Essentially everyone, when they first build a distributed application, makes the
following eight assumptions. All prove to be false in the long run and all cause big
trouble and painful learning experiences.” (see also: Fallacies of Distributed
Computing Explained, Arnon Rotem-Gal-Oz.) The 9th fallacy: ignoring usage costs
when moving to the cloud! Moving data in the cloud is costly!

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

6

Example: Reliable Network

From Kamille Fournie's talk at Strangeloop 2015

7

Example: Latency

1. Know the long term trends in hardware

2. Understand the problem of deep queuing
networks and the solutions

3. Know your numbers with respect to switching
times, router delays, round-trip times, IOPS per
devices and perform “back of the envelope”
calculations

4. Understand buffering effects on latency

5. Include the client side in your calculations

8

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100
Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

Note:
Processor Biggest,
Memory Smallest

From:
D.Patterson

9

Results

Distributed Systems show

- high complexity due to a large number of
interacting agents

- partial knowledge (about partners, state, time)

- a lot of uncertainty e.g. about crashed nodes

A good introduction: Alvaro Videla, What We Talk About
When We Talk About Distributed Systems,

10

Liveness and Correctness

The success of a system consists of correctness (expressed by things
that should NOT happen) and liveness (expressed as things that
SHOULD happen). And all of it is based on failure assumptions
(fairness, byzantine errors etc.)

correctness liveness

“Something good
will eventually
happen”

“Something bad will
not happen”

11

Example: Basic rules of event-based
Systems

Correctness:
- receive notifications only if subscribed to them
- received notifications must have been published before
- receive a notification only at most once

Liveness:
- start receiving notifications some time after a subscription was made

Failure Assumptions:
- e.g. Fail-stop model with fairness

Note that at most once notification may not be enough as it implies that a
system crash might lose notifications (better: persistent notifications
with exactly once semantics) and also: there is no guarantee about the
time lag between subscriptions and the beginning of notifcations. No
ordering rule is given for a simple system.

(see Mühl et.al. 25, 29).

12

Timing Models

- Synchronous: Transmit times are strictly defined and events
happen at defined moments. Nodes can immediately detect a
crashed partner node. Sync. Systems are based on a clock, e.g.
CPUs.
- Asynchonous: Messages will “eventually” arrive. There is no
exact time between sending and receiving messages. Therefore,
a node cannot tell, whether another node has crashed or is just
very slow to respond. No timeouts exist, because they would
require a clock.
- Partial Synchronous: asynchronous systems enhanced with
local clocks. This is the model that is used for real-world
distributed systems.

13

Communication Models

- Message Passing
- Shared Memory

We are going to use the message passing model to build
higher abstractions. An important question in this model is
about the quality of the connection with respect to losses or
duplicated messages. Delivery guarantees like “at-most-once”
or “at-least-once” model different failure scenarios.

14

FLP: The Impossibility of Consensus in
Asynchronous Distributed Systems

See Ken Birman on FLP (resources),
http://www.cs.cornell.edu/courses/cs614/2002sp/cs614%20--%20FLP.ppt

 The so-called FLP (Fischer, Lynch and Patterson) result proves that
any consensus protocol capable of tolerating even a single failure
must have non-terminating runs (in which no decision is reached)
(Birman)

This problem affects basically all consensus based distributed
algorithms (like leader election, agreement, replication, locking,
atomic broadcast)

The reason lies in the fact, that a unique leader is needed to come up
with a decision. But message delays in asynchronous systems can
lead to forced re-election of new leaders – delaying the decision
forever.

15

CAP Theorem

Node 2
Value= ?

Client

Node 1
Value= ?

E.Brewer (2000). Chose either Consistency OR Availability in
the presence of possible network partitions. Client would either
get no answer (consistency) or a possibly incorrect answer
(availability)

Client

16

CAP Theorem - Preconditions

From: Gilbert and Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News (2002) vol. 33 (2) pp. 59. For an
explanation of “atomic” see “Atomic Broadcast” below.

- Consistency: Atomic, linearizable. Total order on all
operations due to linearization point (single instant).

- Availability: Every request received by a non-failing
node MUST result in a response. [..] Every request
MUST terminate

- Partition Tolerance: The network will be allowed to
lose arbitrarily many messages sent from one node to
another.

17

CAP Theorem – Common Misconceptions

From: Code Hale, You Can't Sacrifice Partition Tolerance and M. Kleppman, Please stop
calling databases CP and AP.

- Consistency: Few systems really achieve a total order
of requests! We need to take a closer look at what is
possible and at what costs (latency, partial results)

- Availability: Even an ISOLATED NODE with a
working quorum (majority) on the other side, needs to
answer requests – thereby breaking consistency. The
node does not KNOW that a quorum exists...

- Partition Tolerance: You cannot UN-CHOSE PT. It is
always there. CA systems are not possible!

18

CAP Theorem – Yield and Harvest in AP

From: Fox and Brewer. Harvest, yield, and scalable tolerant systems. Replication vs.
Sharding makes a huge difference in output quality and request numbers.

Node 2
Value= ?

Client

Node 1
Value= ?

Replicated

Node 2
Value= ?

Client

Node 1
Value= ?

Sharded

Close to 100%
harvest,
Much less yield

100% yield
50% harvest

19

CAP Theorem – Modern View

There are more failure types than just PT: Host-crash, client-server
disconnect etc. You cannot avoid those failures completely.

Many systems DO NOT NEED linearizability! Chose carefully, what type
of consistency you really need.

Most systems chose latency over consistency with availability coming in
second.

A fully consistent system in an asynchronous network is impossible (in the
sense of FLP). FLP is much stronger than CAP.

Type of architecture (replication, sharding) and client-abilities (failover)
have an impact as well.

20

From CAP to PACELC?

“because any DDBS must be tolerant of network partitions, according to
CAP, the system must choose between high availability and consistency. [..]
It is not merely the partition tolerance that necessitates a tradeoff between
consistency and availability; rather, it is the combination of
- partition tolerance and
- the existence of a network partition itself.”

PACELC:
A more complete portrayal of the space of potential consistency tradeoffs for
DDBSs can be achieved by rewriting CAP as PACELC (pronounced “pass-
elk”): if there is a partition (P), how does the system trade off availability and
consistency (A and C); else (E), when the system is running normally in the
absence of partitions, how does the system trade off latency (L) and
consistency (C)?

From: Daniel J. Abadi, Consistency Tradeoffs in Modern Distributed Database System
Design, http://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

21

Failures, Types, Models and Detection

22

Failures

-Network: partitioning
-CPU/Hardware: instruction failures, RAM failures
-Operating System: Crash, reduced function
-Application: crash, stopped, partially functioning
-Dynamics: meta-stable failures

Unfortunately in most cases there is no failure detection service
which would allow others to take appropriate action. Such a service is
possible and could detect even partitionings etc. through the use of
MIBs, triangulation etc. Applications could track themselves and
restart if needed.

23

Failure Types

-Bohr-Bug: shows up consistently and can be reproduced.
Easy to recognize and fix.
-Heisenbug: shows up intermittently, depending on the order
of execution. High degree of non-determinism and context
dependency

Due to our complex IT environments the Heisenbugs are both more
frequent and much harder to solve. They are only symptoms of a
deeper problem. Changes to software may make them disappear – for
a while. More changes might caues them to show up again. Example:
deadlock „solving“ through delays instead of ressource order
management.

24

Failure Models
- Crash-stop: A process crashes atomically and stays down.

- Crash-stop with recovery: A process is down from a crash time point to the
beginning of its recovery, and up from the beginning of a recovery until the
next crash happens. For consensus, 2f+1 machines are needed (quorum)

- Crash-amnesia: A process crashed and restarts without recollection of
previous events/data.

 Failstop: A machine fails completely AND the failure is reported to other
machines reliably.

- Omission errors: processes fail to send or receive messages event so they
are alive.

 Byzantine Errors: machines or part of machines, networks, applications fail
in unpredictable ways and may recover partially. For consensus, at least
3f+1 machines are needed.

Many protocols to achieve consistency and availability make certain assumptions
about failure models. This is rather obvious with transaction protocols which may
assume recovery behavior by its participants if the protocol should terminate. For
byzantine error proofs see J. Welch, CSCE 668, DISTRIBUTED ALGORITHMS AND
SYSTEMS

25

Failures and Timeouts

A timeout is NOT a reliable way to detect failure. It can be
caused by short interruptions on the network, overload
conditions, routing changes etc.

A timeout CANNOT distinguish between the different places
and kinds of failures.

It CANNOT be used in protocols which require failstop
behavior of its participants

Most distributed systems offer only timeouts for applications
to notice problems

A timeout does not allow conclusions about the state of participants.
It is unable to answer questions about membership (and therefore
responsibility). If timeouts ARE used as a failure notification „split-
brain“ condidtions (e.g. airtraffic control) can result (Birman 248)

26

A FD need not be correct all the time. It has to provide the
following QoS:
- Be safe all the time, be live during “better” failure periods
-no process blocks forever waiting for a message from a
dead coordinator
-eventually some process x is not falsely suspected. When x
becomes the coordinator, every process receives its x’s
estimate and decides
- do not cause a lot of overhead

(see Sam Toueg, Failure Detectors – A Perspective)

Failure Detectors

27

• Timing-out also depends on previous heartbeat

Process p

Process q

FD at q

TO TOTO TO

FD Algorithm (S. Toueg)

28

Metastable Failures

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-
bronson.pdf

Work Amplification: A unifying theme across
metastable failures is that the sustaining effect
typically involves work amplification, which refers
to extra (often wasted) work that is performed in the
atypical case. Designing systems to avoid
metastable failures will require a systematic
understanding of where the largest instances of
work amplification occur. Ideally, systems will be
designed to upper bound the degree of work
amplification.

Feedback Loops: There are many plausible
feedback loops in a complex system, yet only a few
cause problems. The strength of the loop depends
on a host of constant factors from the environment,
such as cache hit rate. We don’t need to eliminate
every loop, just weaken the strongest ones.
What are systematic techniques for accurately
identifying vulnerabilities in existing systems?

29

Remedies for Emergent Failure Modes

- Change routing/queuing/failover during crisis
- Measure queuing latency and ensure goodput by shedding load
- Read-through cache instead of lookaside cache
- Prioritization
- Stress tests
- Optimizations not only for the common case. This spreads vuln. Factor
- Fast-Error Paths
- Investigate outliers – they are an early sign of problems

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s11-
bronson.pdf

30

http://highscalability.com/
blog/2022/7/11/stuff-the-
internet-says-on-scalability-
for-july-11th-2022.html

31

Time in Distributed Systems

There is no global time in distributed systems. Logical time modelled
as partially ordered events within a process or also between
processes. A good read: There is No Now - Problems with
simultaneity in distributed systems, Justin Sheehy, ACM Queue.
https://queue.acm.org/detail.cfm?id=2745385

- Event clock time (logical)
- vector clock time (logical)
- TrueTime (physical interval time)
- Augmented time (physical/logical combination)

32

No Global Time in Distributed Systems

p1

p2

p3

t0

t0

t0

e1, timestamped t0

e2

The processes p1-p3 run on different clocks. The clock skew is visible in the
distances of t0 on each time line. T0 represents a moment in absolute
(theoretical) time in this distributed system. For p2 it looks like e1 is coming
from the future (the sender timestamp is bigger than p2‘s current time). E2
looks ok for p3. Causal meta-data in the system can order the events
properly. Alternatively logical clocks and vector clocks (see Birman) can be
used to order events on each process and between processes. This does
NOT require a central authority

33

Consistent Cuts vs Inconsistent Cuts

p1

p2

p3

e1
e2

Consistent cuts produce causally possible events. With inconsistent cuts
(red) some events arrive before they have been sent. Consistency of cuts is
independent of simultaneous capture. (Birman 257). Tipp: a system with
atomic snapshot makes a consistent cut easy by going through the history!

t1

t1

t2

t2

t2?

34

Event Clock (Logical Clock)

Events are partially ordered within processes according to a chosen
causal model and granularity. E1 < e2 means e1 happend before e2.
The time between events is a logical unit of time. It has no physical
extension.

p1

p2
e1 e2

e1 e2

Logical
unit of
time

Logical unit of
time

35

Event Clock (Logical Clock)

Events delivered through messages clearly relate processes and their
times and events. This external order is also a partial order of events
between processes: send(p1,m) < recv(p2,m). The new logical clock
value is max(own value +1, received value).

p1

p2

e1 e2 Send(p1,m,2)

Recv(p2,m,3)
e5e1 e2 e3 e4

e6

36

Lamport Logical Clock (2)

37

„happens before“ (®) according to Lamport

A ® B if A and B are within the same sequential thread of control
and A occurred before B.
A ® B if A is the event of sending a message M in one process and B
is the event of receiving M by another process. if A ® B and B ® C
then A ® C. Event A causally affects event B iff A ® B.
Distinct events A and B are concurrent (A | | B) if we do not have A
® B or B ® A.
Lamport Logical Clocks count events and create an ordering
relation between them. These counters can be used as timestamps on
events. The ordering relation captures all causally related events but
unfortunately also many unrelated (concurrent) events thereby
creating false dependencies. (Source:
http://www.cs.fsu.edu/~xyuan/cop5611/lecture5.html and Ken
Birman)

38

Vector Clocks

Vector Clocks

1 | 4 | 6 | 4 | 1 | 4 |1 | 4 |1 | 4 |1 | 4 |1 | 4 | 2 |

Event
counter for
Node i = 2

1 | 4 | 6 | 4 | 7 | 4 |1 | 4 |1 | 4 |1 | 4 |1 | 4 | 2 |

Event
counter for
Node j = 4

Vector clocks are transmitted with messages and compared at the
receiving end. If for all positions in two vector clocks A and B the
values in A are larger than or the same as the values from B we say
that Vector Clock A dominates B. Thiis can be interpreted as
potential causality to detect conflicts, as missed messages to order
propagation etc.

39

Causal dependencies with vector clocks

Source: wikipedia commons

40

Causal Re-ordering of messages

From: Roberto Baldoni et.al,
http://net.pku.edu.cn/~course/cs501/2008/reading/a_tour_vc.html

41

Physical Interval Time (e.g.TrueTime)

Time
Master

Sat

GPS

“Armageddon”
Master

Atom
Clock

Node

Time
Agent

Datacenter

Other
DCs

Marzullo's
Alg.

Communicating time masters ensure, that there is a bounded
time-uncertainty for the event time e with respect to the
absolute (wall-clock) time. Time servers check themselves
for rogue clocks. Error is in the area of 6ms.

42

Interval Time

The system guarantees, that for an invocation tt = TT.now(), tt.earliest() ≤ tabs(enow) ≤
tt.latest(), where enow is the invocation event. (from: Spanner: Google’s Globally-
Distributed Database, James Corbett et.al.). Does Spanner beat CAP? Interesting paper
from E.Brewer, Spanner, TrueTime & The CAP Theorem,
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf

time

earliest latest

TT.now()

2*ε

43

TrueTime API

Using TT, Spanner assigns globally-meaningful commit timestamps to transactions
respecting the serialization order: if a transaction T1 commits (in absolute time) before
another transaction T2 starts, then T1's assigned commit timestamp is smaller than T2's.

TT.now()
TTinterval: [earliest, latest

TT.after(t) True if t has passed

TT.before(t) True if t has not arrived yet

2e |T(now|

44

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

Commit Time

We will look at distributed transactions and consistency in our
session on services! From: OSDI 2012, Google

45

Reasons for Hybrid Clocks

- In a large distributed system (e.g. one spanning
several data-centers across the world), vector
clocks become too large to maintain efficiently.

- Physical interval time needs to respect the
uncertainty bound. This forces writes and reads to
wait until the interval time is over on all
machines.

46

Hybrid Logical Clock Algorithm

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

47

Hybrid Logical Clock Run

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
Notice a consistent cut at l=10 and c=0

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

48

Cosmic Time Synchronizer

Hiroyuki K. M.Tanaka, "Cosmic time synchronizer (CTS) for
wireless and precise time synchronization using extended air
showers," Scientific Reports: April 30, 2022

49

Ordering, Causality and Consensus

At the end of the day all coordination in distributed
systems is based on ordering events!

50

Ordering in Distributed Event-Systems

-FIFO Ordering: a component needs to receive notifications in
the order they were published by the publisher
-Causal Ordering
-Total Ordering: events n1 and n2 are published in this order.
Once a component receives n2 not other component in this
system is allowed to receive n1. (Solution: one component
decides about the global order of events)

Total Ordering is orthogonal to the other two ordering relations. The
most important question is when a component is allowed to accept a
message and publish it.

51

Causality Levels?

Mail to X from Y
Reply to Y from X

Mail to X
 from Y

Does a reply to a mail imply a causal relationship between both events?
What if the reply comes long after the original mail and the author only
used the reply-feature for convenience reasons (just re-use the senders
mail address as a new target instead of typing the address). The original
mail content would not have a connection to the reply content. But would
the reply mail have happened without the original mail? Perhaps. But is
there a computing relation between both? Perhaps.

52

Consensus

(After Birman)

A set of processes have inputs vi ∈{0,1}
A Protocol is started (by some sort of trigger)
Objective: all decide v, for some v in the input set
Example solution: “vote”and take the majority value

Termination: Every correct process eventually decides some value.

Validity: If a process decides v, then v was proposed by some process.

Integrity: No process decides twice.

Agreement: No two correct processes decide differently.

53

Algorithms for Consensus

• Two-Phase Commit
• Static Membership Quorum, Paxos, Raft
• Dynamic Group Membership (virtual synchrony, multicast

based)
• Gossip Protocols

These protocols offer trade-offs with respect to
correctness, liveness (availability, progress) and
performance

54

Two-Phase Commit (2PC)

XAResource1XAResMgr1XAResource2XAResMgr2 CoordinatorcurrentTA

begin

Withdraw
money

Register resource with
coordinator

Read/write data
place money Register resource with

coordinator
Read/write datacommit

vote

vote
Read/write data and
prepare

Read/write data and
prepare

Do
commit

Do
commit

Tell resource manager to
commit

Tell resource manager to
commit

 phase 1

 phase 2

Work phase Participants
can abort TA
anytime

After 1st OK
Participants cannot
abort/make
progress without
coordinator

No progress
without
coordinator

55

Liveness and Correctness of 2PC

- 2PC allows atomic (linearizable) updates to participants. But this depends on the
 Type of implementation (e.g. read locks)
- 2PC is considered rather expensive with respect to latency. Because participants are
 Not allowed to step back from a decision in the prepare and commit phases, a
 persistent log is required at each participant.
- The crash-failure model can bring the execution of 2PC to a halt, e.g. when the
 Coordinator fails and stays down.
- The crash-failure of a participant after the work-phase leads to a heuristic outcome,
 if it cannot reboot.
- If everything goes right, 2PC has an easy and clear semantic for application
 developers.

If we assume a different failure model (e.g. fail-stop with
detection), we could improve the protocol e.g. by letting
participants ask each other about the outcome or deciding on a
new leader (coordinator).

56

 Quorum based Consensus

Majority rulez! Not all known processes N that replicate a value X need
to be reached in every update. But the number of processes to read
(Read Quorum RQ) and the number to write (Write Quorum WQ) need
to be at least N+1. E.g. RQ==2 and WQ==4 in a system of N==5. Will
partitions affect correctness or liveness? How about performance of a
quorum system?

client

X

X

X

X

RQ

WQ

X
Quorum
intersection
rule

57

Liveness and Correctness of Quorum Protocols

- QP allow atomic (linearizable) updates to participants. But this depends on the
 Type of implementation (e.g. read quora)
- QP are considered rather expensive with respect to latency. For consistency, even
 Simple reads need to ask for a quorum. Therefor many QP systems chose a leader
 Approach to achieve better performance. Routing client requests through a leader
 raises the problem of leader crashes. Those are usually handled through leases,
 Which unfortunately cause waits.
- The crash-failure model does not stop the protocol, as long as a quorum is still
 possible
- Network partitions either force the system to answer with all non-failing nodes
 (giving up consistency) or to stop answering requests from minority nodes (giving
 Up availability).

Many of today's scheduling and locking components (chubby,
zookeeper, copy-cat etc.) rely on quorum decisions.

58

Static Membership and Split-Brain
Condition

What is a good group size for quorum algorithms? How can split brain
conditions be detected or avoided? How should X4 behave? In a
consistent system (CP), the minority cannot know, if it is the only
survivor!

X5

X3

X1

X3

X2Dead

X4

X2

X4

X2

X3

X1

Majority OK No Majority, X4
now highest IP

59

Quorum based sync. consensus: Paxos

[Message Flow : Basic Paxos (one instance, one successful round)]

Client Proposer A1 A2 A3 L1 L2

--------> Request
--------------------->Prepare(N)
----------------------->Prepare(N)
------------------------->Prepare(N)
<-------------------- Promise(N,{Va,Vb,Vc})
<---------------------- Promise(N,{Va,Vb,Vc})
<------------------------ Promise(N,{Va,Vb,Vc})

Client (now) Leader A1 A2 A3 L1 L2

---------------------> Accept!(N,Vn)
-----------------------> Accept!(N,Vn)
-------------------------> Accept!(N,Vn)
<-------------------- Accepted(N,Vn)
<---------------------- Accepted(N,Vn)
<------------------------ Accepted(N,Vn)

<--- Response
<--- Response

(modified after [Turner], A= Acceptor, L=Learner, N=Instance, V=Value)

How does a rather static group leader affect correctness and liveness?
(see google chubby paper)? Good talk by Ousterhout on Paxos.

60

 Paxos Phases

After: The Paxos Family of Consensus Protocols
Bryan Turner, and L.Lamport, Paxos mad Simple

Phase 1a: Prepare
A Proposer (the leader) selects a proposal number N and sends
a Prepare message to a Quorum of Acceptors.

Phase 1b: Promise
If the proposal number N is larger than any previous proposal,
then each Acceptor promises not to accept proposals less than N, and
sends the value it last accepted for this instance to the Proposer (the
leader).
Otherwise a denial is sent.

Phase 2a: Accept!
If the Proposer receives responses from a Quorum of Acceptors,
it may now Choose a value to be agreed upon. If any of the Acceptors
have already accepted a value, the leader must Choose a value from
this set. Otherwise, the Proposer is free to propose any value.
The Proposer sends an Accept! message to a Quorum of
Acceptors with the Chosen value.

Phase 2b: Accepted
If the Acceptor receives an Accept! message for a proposal it has
promised, then it Accepts the value.
Each Acceptor sends an Accepted message to the Proposer and
every Learner.

61

Understandable Consensus: RAFT

http://thesecretlivesofdata.com/raft/ and
https://raft.github.io/

http://thesecretlivesofdata.com/raft/

62

From: D.Ongaro, Designing for Understandability: The
Raft Consensus Algorithm,
https://www.youtube.com/watch?v=vYp4LYbnnW8

 From Consensus to RSM

63

Atomic Broadcast

Validity: If a correct process broadcasts a message, then all correct processes
will eventually deliver it.

Uniform Agreement: If a process delivers a message, then all correct processes
eventually deliver that message.

Uniform Integrity: For any message m, every process delivers m at most once,
and only if m was previously broadcast by the sender of m.

Uniform Total Order: If processes p and q both deliver messages m and m0,
then p delivers m before m0 if and only if q delivers m before m0.

Xavier Defago, Andre Schiper, and Peter Urban. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372{421,
2004.)

A broadcast algorithm transmits a message from one process (the primary process)
to all other processes in a network or in a broadcast domain, including the primary.
Atomic broadcast protocols are distributed algorithms guaranteed either to correctly
broadcast or to abort without side effects. It is a primitive widely used in distributed
computing for group communication. Atomic broadcast can also be defined as a
reliable broadcast that satisfies total order (ZooKeeper's atomic broadcast protocol:
Theory and practice, Andre Medeiros, March 20, 2012. See also:

64

Atomic Broadcast Protocol Data

 Tuple (e, v, tc) with

- e being the epoch (the duration of a specific
 leadership)
- v being the view (defined membership set

which lasts until an existing member
leaves or comes back?

- tc being the transaction counter, counting
rounds of executions, e.g. updates to
replicas

65

Atomic Broadcast Protocol Phases
1. Leader election/discovery (members decide on a new

leader, a consistent view of the group is formed)

2. Synchronization/recovery (Leader gathers outstanding,
uncommitted requests recorded at members, e.g. due to
the previous leader crashing. Members missing certain
data are updated, until all share the same state)

3. Working (Leader proposes new transactions to the group,
collects confirmations and sends out commits.)

The exact procedures differ from protocol to protocol (Paxos,
Raft, etcd). Re-ordering of requests is sometimes critical (e.g.
not allowed in zookeeper). Frequent leader change is almost a
case of DOS due to the overhead involved. Watch out for
latency on the leader node!

66

Dynamic Group Membership Services

Examples are: Horus, Spread. (Birman 251ff). Scales almost linearly up to
32 members. 80000 updates in a group of five (no disk access, failstop
nodes). Group members typically do not wait for acknowledge. Models
with different ordering and causality qualities exist (fbcast, cbcast,
abcast). See Ken Birmans text on wikipedia.

X

X

X

X

X

Multicast based
membership service

App

App

App App

App

clientrequest

67

From Ken Birman, https://www.cs.cornell.edu/ken/History.pdf For the
application the events look synchronous. VS alone does not solve
consensus!

68

Gossip Protocols for Consensus

http://sourceforge.net/apps/mediawiki/kai/index.php?title=Introduction
. Layered gossip protocols can provide more efficient communication.

http://sourceforge.net/apps/mediawiki/kai/index.php?title=Introduction

69

Example: Monitoring with Gossip Prot. (GEMS)

Critical parameters: Tgossip, Tcleanup, Tconsensus, event propagation,
Node selection etc., Rajagopal Subramaniyan et.al.,

70

Synchronous Replication – Distributed
Write-Ahead-Log (DWAL)

(CP of CAP)

71

Topology of a DWAL

Source:
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZooKee
perPresentations?preview=/4193445/91554201/Apache
%20ZooKeeper%20-%20Mesosphere.pdf

72

Design Componentes of a Replicated DWAL

From: https://martinfowler.com/articles/patterns-of-distributed-systems/

Local
to
each
node

Global visibility of replicated state

Consensus
protocol
(Paxos, Raft)

Majority decisions (CP)

Group membership

Efficiency
If leader crashes or
group changes

Message
order and
latency
hiding

73

Concept Exercise: Correctness and Liveness

- If no quorum can be reached (n-2-1 machines dead/unreachable)?

- if a leader crashes?

- if a follower crashes?

- How available is a DWAL? (scenarios)

- The distributed state machine approach: availability?

- Is the DWAL coherent and consistent?

74

Consistency in Non-Transactional Distributed
Storage Systems

From: Consistency in Non-Transactional Distributed Storage Systems
P. Viotti, M.Vukolic, https://arxiv.org/abs/1512.00168

75

Asynchronous Replication and Eventual
Consistency

(AP of CAP. For synchronous replication see
consensus protocols like Paxos, Zab, Raft etc.)

76

 Replication Models

1. who does the update? Single Master or multiple masters
2. What is updated? State transfer or operation transfer?
3. How are updates ordered?
4. How are conflicts handled/detected?
5. How are updates propagated to replica nodes?
6. What does the system guarantee with respect to divergence?

Roughly after [Saito]

77

 Single-Leader Replication

client

Node1
(master)

x==5

Node2
x==10

Node3
x==5

Followerclient Replication lag

update

x=5

Single-Master replication has many advantages: ordered updates, efficient caching, highly
available reads. Problems are: how far behind are replicas? What happens, when leader
crashes? How long until followers take over? (lease problem). Not good for primary keys
and other critical resources. Some systems offer different API QoS levels.

78

Eventually consistent reads

 API Examples:
PNUTS (Yahoo): read-any, read-critical, read-latest, write, test-and-set-

write.
SimpleDB, GoogleAE: read_consistent, read_eventually_consistent
“The data returned by a read operation is the value of the object at some

past point in time but not necessarily the latest value” (Doug Terry,
MSR Technical Report October 2011)

Master-
Replica

Slave
Replica

Client
update

Stale
read

Client
Eventual
update

79

Multi-Master Replication

Update conflict: two identical rows changed on two servers
Uniqueness conflict: two identical primary (uniqe) keys added in same table on two servers
Delete conflict: during delete of a row the same row is changed on a different server.
Multi-leader systems typically offer several conflict resolution strategies (last writer wins,

keeping different versions, anti-entropy background merge/resolve)

client1

Node1
(master)

x==5

client2

conflict

x=5

Node2
(master)
x==10

x=10

80

 Leader-less (Quorum) Replication: Write

client Node1
x==5

Node2
x==5

Node3
x==10

Write
Quorumx=5

Without a leader the client decides on how many machines to write to or read from. The
formula in general is: W+R>N, where N is the number of machines in the replication
group. Clients can use the formula to either speed up writes or reads, because quorum
systems in general suffer from long tail effects. If a quorum is not available, the client can
write to a “sloppy quorum” and risk the write getting losts. Without anti-entropy there is a
high danger of partial writes in the system, which are not cleaned up. (see Kleppmann)

81

 Leader-less (Quorum) Replication: Read

client Node1
x==5

Node2
x==5

Node3
x==10

Read
Quorum

X==?

Some systems detect inconsistencies during read. The can either automatically perform a
cleanup (e.g. use version number to hand back the correct x from Node2), or offer both
values for the client to decide. (see Kleppmann)

82

Session Modes of Asynchronous Replication

“Read your writes” (RYW) guarantees that the contents read from a
replica incorporate previous writes by the same user.
“Monotonic reads” (MR) guarantees that successive reads by the
same user return increasingly up-to-date contents.
“Writes follow reads” (WFR) guarantees that a write operation is
accepted only after writes observed by previous reads by the same
user are incorporated in the same replica. No jumping back in tome
with a replica that missed some writes.
“Monotonic writes” (MW) guarantees that a write operation is
accepted only after all write operations made by the same user are
incorporated in the same replica. (read set of client received from
replica will show those write events)

Session Guaranties with optimistic replication

After [Saito]. Remember that it is transparent
to the client which replica answers a request

These guarantees seem to enable “sequential-consistency”
for a specific client. In other words: Program order of
updates from this client is respected by the system. Clients
can track those guarantees, e.g. with vector clocks

83

Session Anomalies

After: Adrain, Coyler, The Morning Paper
https://blog.acolyer.org/2016/02/26/distributed-consistency-and-
session-anomalies/

- non-monotonic reads
- non-monotonic writes
- non-monotonic transactions
- not-reading-my-writes

84

Non-Monotonic Reads

After: Adrain, Coyler, The Morning Paper
https://blog.acolyer.org/2016/02/26/distributed-consistency-and-
session-anomalies/

85

Non-Monotonic Writes

After: Adrain, Coyler, The Morning Paper
https://blog.acolyer.org/2016/02/26/distributed-consistency-and-
session-anomalies/

86

Non-Monotonic Transactions

After: Adrain, Coyler, The Morning Paper
https://blog.acolyer.org/2016/02/26/distributed-consistency-and-
session-anomalies/

87

Not-Reading-My-Writes

After: Adrain, Coyler, The Morning Paper
https://blog.acolyer.org/2016/02/26/distributed-consistency-and-
session-anomalies/

88

Global Modes of Replication

Taken from D. Terry and modified. He included 2 session modes too. Clients
cannot control these modes, because they include writes by other clients. “un-
real” means, that a certain combination of values never existed in reality. Clients
can combine session- with global-guarantees!

Strong
Consistency

See all previous writes Ordered, real, monotonic,
complete

Consistent
Prefix

Ordered sequence of
writes/snapshot isolation

Ordered, real, x latest missing,
snapshot isolation like

Bounded
Staleness

See all writes older than
x or every write except
the last y

Ordered, real, x latest
missing,monotonic increasing
due to bound

Eventual
Consistency

See subset of prev.
writes

Unordered, un-real,
incomplete

89

Trade-Offs

Taken from D. Terry. Can you explain the difference between CP
and BS with respect to the three properties?

90

Example: Replicated Key-Value Store

Client

Node 1
Key:

Value:

Depending on the consistency guarantees offered by the store,
clients see very different results, e.g. because they read from a
different replica each time.

Node 2
Key:

Value:

Node 3
Key:

Value:

Node 4
Key:

Value:

write(key, value)
Value = read(key)

ClientClient

91

Exercise: Soccer Game

Your job: Given a soccer game, you need to determine the
right consistency guarantees needed for each role in the
game.

See: owncloud: game.odt
 Google drive: ULS: game.odt or game.pdf

92

Resources (1)
• Nancy Lynch, Distributed System Algorithms (mathematical proofs of synchronous and

asynchronous DS algorithms)
• Ken Birman, Reliable Distributed Systems
• Paxos made live (google)
• https://github.com/benjamintanweihao/distributed-systems-references(nice collection of

important papers)
• Brian Keating, Challenges Involved in Multimaster Replication,

www.dbspecialists.com/files/presentations/mm_replications.html
• Roberto Baldoni et.al, Vector Clocks

http://net.pku.edu.cn/~course/cs501/2008/reading/a_tour_vc.html
• J. Welch, CSCE 668DISTRIBUTED ALGORITHMS AND SYSTEMS,

https://parasol.tamu.edu/people/welch/teaching/668.f11/set10-
consensus2.ppt (byzantine failures)

• Replicated Data Consistency Explained Through Baseball, Doug Terry, Microsoft.
MSR Technical Report October 2011

https://github.com/benjamintanweihao/distributed-systems-references

93

Resources (2)
Ken Birman on FLP,

http://www.cs.cornell.edu/courses/cs614/2002sp/cs614%2
0--%20FLP.ppt

• [Vogels] Werner Vogels, Eventually Consistent –
Revisited,
http://www.allthingsdistributed.com/2008/12/eventually_
consistent.html

• Sam Toueg, Failure Detectors – A Perspective
• Optimistic Replication, YASUSHI SAITO, MARC

SHAPIRO, MS-Research
• Rajagopal Subramaniyan et.al., GEMS: Gossip-Enabled

Monitoring Service for Scalable Heterogeneous
Distributed Systems

• Scalable Management for Global Services, Ken Birman
Cornell University

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

94

On CAP/Critique

Brewer. Towards robust distributed systems. Proceedings of the Annual ACM Symposium
on Principles of Distributed Computing (2000) vol. 19 pp. 7—10

Gilbert and Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. ACM SIGACT News (2002) vol. 33 (2) pp. 59

DeCandia et al. Dynamo: Amazon’s highly available key-value store. SOSP ‘07:
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles
(2007)

Fox and Brewer. Harvest, yield, and scalable tolerant systems. Hot Topics in Operating
Systems, 1999. Proceedings of the Seventh Workshop on (1999) pp. 174—178

Brewer. Lessons from giant-scale services. Internet Computing, IEEE (2001) vol. 5 (4) pp.
46 – 55

Martin Kleppmann, Please stop calling databases CP or AP,
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Coda Hale, You Can’t Sacrifice Partition Tolerance,
http://codahale.com/you-cant-sacrifice-partition-tolerance/#ft2 (I took most references
from his posting)

S.Gilbert, Nancy A. Lynch, Perspectives on the CAP Theorem,
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf (very good intro)

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
http://codahale.com/you-cant-sacrifice-partition-tolerance/#ft2
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf

95

On Coordination/Atomic Broadcast

ZooKeeper: A Distributed Coordination Service for Distributed Applications,
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html

ZooKeeper's atomic broadcast protocol:Theory and practice, Andre Medeiros, March 20, 2012

Marco Serafini, Zab vs. Paxos,

Coordination Avoidance in Distributed Databases, By Peter David Bailis, (dissertation)

Jessica Kerr, Provenance and Causality in Distributed Systems,
http://blog.jessitron.com/2016/09/provenance-and-causality-in-distributed.html

http://zookeeper.apache.org/doc/trunk/zookeeperOver.html

96

General

Alvaro Videla, What we talk about when we talk about Distributed Systems,
http://videlalvaro.github.io/2015/12/learning-about-distributed-systems.html

http://bravenewgeek.com/from-the-ground-up-reasoning-about-distributed-systems-in-the-real-
world/
- lists important papers and explains things from the bottom up

https://www.cse.unsw.edu.au/~cs9243/16s1/papers/fallacies.pdf

http://blog.empathybox.com/post/19574936361/getting-real-about-distributed-system-
reliability- questions the idea that failures in DS are independent. This invalidates the
redundancy argument a bit and shows the importance of monitoring and system management.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96

