

Architecture, Algorithms and Methodology
of Ultra Large Systems

(With a special look at storage concepts)

Prof. Walter Kriha

Computer Science and Media Faculty

HdM Stuttgart

www.kriha.org

http://www.kriha.org/

You may never need to grow as big as an ULS but
some parts of your architecture will probably
experience scalability problems one day.

By studying ULS you will be able to read the signs
and know what to do.

Motivation

Topics

• How big are they? A look at Facebook and co.
• Methodology, architectures, concepts and algorithms
• Storage: the move towards NOSQL, Grid Storage

Scalability
• Current trends: automation, data-flow processing,

transparency

• The Future: ambient clouds and scaling beyond our
imagination

• Resources

How big are they?

• 20000 to over 2 Mio. servers
• Worldwide replicated data centers, 24/7 operation
• Petabyte of stored data to be analyzed every day
• Terabyte of new data/media every day

• 400.000.000 (twitter) to over 1.000.000.000 (facebook)
users with growth rates beyond 300.000 new users every
day (farmville: 1 Mio after 4 days, 10 Mio. after 10)

• Billions of requests per API every day

Google Datacenter Architecture

Google cluster, rack and blades,
after Jeff Dean, Designs,
Lessons and Advice from
Building Large Distributed
Systems

ULS Methodology

while (true)
{
identify_and_fix_bottlenecks();
drink();
sleep();
notice_new_bottleneck();
}
This loop runs many times a day.
(Todd Hoff, youtube article)

Research: can we evolve systems instead? Does scaling always mean new
system architecture (Think about the financials too!)? Does capacity planning
work at the growth rates given above?

ULS Architecture

• Horizontally scaled clusters of blades running LAMP,
Ruby etc.

• 10s – 100s of Terabyte memcached caches (twitter
keeps all messages in RAM cache)

• Asynchronous message processing via queues and pre-
processing

• Sharded DBs or distributed key/value stores

• Globally distributed data centers with async. replication.

• Dedicated components for parallel scheduling, parallel
processing, locking, file serving using small multi-cast
clusters for control

scheduler

Failure detectorDistributed file system

Key/value store

Consensus

Membership service

IP service relocator

Load balancer

Locking service

Consistent hashing

Memory cache

Optimistic repl.Map reduce

Failure Models of Distributed Systems

Fragment handler

Log Service

Notification Service

Data Analysis and Request Processing Applications

Queue

APIs

ULS Architecture Components

Event. Consist.

ws

ws

DB
server

DB
San

DB
server

DB
server

Virtual
DB
San

DB
server

Ws
Shard API

Membership Milestones:
- 500,000 Users: A Simple
Architecture Stumbles

-1 Million Users:Vertical
Partitioning Solves Scalability
Woes

-- 3 Million Users: Scale-Out Wins
Over Scale-Up

-- 9 Million Users: Site Migrates to
ASP.NET, Adds Virtual Storage

-- 26 Million Users: MySpace
Embraces 64-Bit Technology

(after Todd Hoff‘s Myspace article)

DB

DB
DB

DB DB

Ws
Shard API

64-bit DB
server

Ws
Shard API

What is MISSING????

Wrong Optimization: MySpace

Web
server

DB
server

Adding a cache changes read/write ratios considerably and make
many DB optimizations potentially redundant.

The „google principle“: don‘t spend much effort on optimizing one
binary. Set it up and go for scalability right away (try to solve the
problem with adding resources. If this does not work out easily, re-
think your design.

DB

End-to-End Optimization

memcached
memcached

memcached

ULS Concepts
• Partitioning of data, services and users
• Avoid locking and state in requests. Shared nothing architecture
• De-normalize data for fast access
• Always measure read/write ratios across sequential vs. random access

dimensions
• Avoid deletes (garbage collection). Use versions, timestamps.
• Match applications and infrastructures (but beware for requirment

changes)
• Avoid joins and complex queries, use application level processing instead

(what did you learn at DB-school???)
• Multi-level caching, multi-get methods (learn from queuing theory)
• Strict feature and service management (SLA, turn-off, content distribution,

user management, connection management)
• Exact measurements of infrastructure
• Instrumented code for permanent real-time monitoring and alerting
• Best-of-breed thinking
• Multi-paradigm, concept based selection of languages and technology
• Open source only (for license and instrumentations reasons)
• Avoid transactions
• Use dynamic languages for frontend apps to get fast development cycles

Example: Partitioning in MMOGs

Player 1Player 1

Login ServerLogin Server Auth DBAuth DB

PID 1PID 1 Session-ID 984Session-ID 984

okok okok okok Instance ServersInstance Serversfullfull fullfull

PID 1PID 1

handover

Game DBsGame DBs

PID 1PID 1
Session-ID 984Session-ID 984

Updates via PID
Log via Session-ID

Distribution ServerDistribution Server

handover
(Both Players will join
The same instance)

Updates via PID
Log via Session-ID

PID 1PID 1
Session-ID 984Session-ID 984

Instance-ID 17Instance-ID 17

Instance-ID 17Instance-ID 17

Continuous
World Servers

(Clusters)

Continuous
World Servers

(Clusters)

Payment Information

Realm Selection Server
(Realm List / Realm DB)

Realm Selection Server
(Realm List / Realm DB)

R1R1

Player 2Player 2
PID 2PID 2

Continuous
World Servers

(Clusters)

Continuous
World Servers

(Clusters)

R2R2

fullfull

PID 2PID 2
Session-ID …Session-ID …

Instance-ID 17Instance-ID 17

PID 2PID 2
Session-ID …Session-ID …

Instance-ID 17Instance-ID 17

(R1 and R2 are in the
same Realm Pool)

Realm Pool 7Realm Pool 7
(Distribution Servers are often
split per Realm Pool)

From Andreas Stiegler, MMOG infrastructures

Example: Service Management

1. SLA for every service with 99.99 percentile guaranteed

2. All services degradable. All services have about the same service
time.

3. Wait time measured to avoid dead request processing

4. Balancing and failover using group communication

5. Services split into synchronous and asynchronous parts

user Wait queue

Scalable Algorithms

• Asynchronous I/O to avoid context switching of large numbers of
threads (Nginx)

• Non-locking compare-and-swap, optimistic locking, software-
transactional memory

• Algorithms as functions to avoid locking and side-effects (Erlang
modules for DBs, instant messaging, DHTs)

• Consistent hashing to allow stable partitioning of data during re-
configuration (Dynamo, Scalaris)

• Paxos for consistent, synchronous replication (Google chubby)
• Eventual consistency for fast replication (vector clocks to check for

„read-your-own-writes“ etc. (Amazon Dynamo)
• Map/reduce for parallel processing of data (everybody)

Watch out for the effects on application programmers! Not everybody
wants to explicitly deal with inconsistencies…

Scalable Algorithm Example: map/reduce

For (i=0;i<AllDocuments;i++)

 Document=nextDocument();

Result=Process(Document)

Write(Result)

Map(Documents, ProcessingFunction)

 For (i=0;i<AllDocuments;i++)

 New Thread(Document,
ProcessingFunction)

docsprocessor

doc

doc

processor

processor

Infrastructure for Map/Reduce Jobs

From Jeff Dean/Sanjay Ghemawat, needs to deal with stragglers etc.

A simple hash function like
X -> ax + b (mod P)

 with P being the number of nodes would cause a “thundering herd” problem
with all cache entries suddenly being invalid. Mapping both resources and
machines into a ring assigns a certain range of keys per machine. Amazon’s
Dynamo has even more indirections.

Consistent Hashing

Secrets of Ultra Large Scale Systems?

• Don‘t be afraid of changing languages or code
• Don‘t be afraid of using things like PHP or MySQL
• Define your own processes
• Measure and trace ruthlessly
• Define APIs but don‘t overrate their effect on code stability
• Don‘t overrate Standards
• Do not use binary only components
• Get help by using a CDN if necessary
• Don‘t be too proud to install a degraded mode to deal with

overload
• Use languages which allow you to change quickly,

especially the front-end features

Storage Concepts

• From sharded databases to NoSQL stores

• grid file system scalability

Database Sharding

1. Choose a data type for partitioning (row or column)

2. Decide on lookup strategy (algorithm or master table)

3. Deal with changes in the distribution of the data type
over time

4. Adapt application to use meta-data for lookup (API)

5. Avoid joins and complex queries by using a powerful
caching architecture which stores complex objects and
not only row data

6. Allow for changes in the sharding logic.

The combination of MySQL and Memcached is still able to run
many very large sites (see Persyn for sharding logic)

User profile friends photos messages

0001

0002

Topic 1Topic 2

partitioning along columns

Group 1

Group 2

partitioning along rows

Horizontal and Vertical DB Sharding

master

Write requests from app.
servers

App.
server

Switching

App.
server

Switching

Friends master

read requests from app.
servers

User table
replicated
from
master for
joins

Friends
table

User
table

Photo master

photo
table

User
table

Not shown: read slaves per master

Data Duplication across Shards

The Move to NoSQL Datastores

1. No ACID properties needed in many social apps

2. No hard schema wanted or needed

3. Lack of SQL skills

4. No complex SQL queries possible (performance).

5. No joins possible (sharding)

6. Single resource type resources are hard to scale,
sometimes doing sorts in the application scales better

7. Mostly object blobs needed to allow fast code changes

8. Most data held in cache anyway, DB used as backup
only

Why then are we manually scaling with sharding a SQL DB and
using memcached? Why no use one system with some simple
query functions, caching and automatic scaling?

NoSQL Column Stores (Bigtable, HBASE,
Cassandra etc.)

 (after Lipcon)

 "aaaaa" : {

"A" : {

"foo" : { <t2>:"y„, <t1>:“x“},

"bar" : { <t2>:“f“, <t1>:„d" },

"B" : {

"" : { <t3>:„w", <t2>…} },

Loosely after: [Wilson]

„row key“ in sort in
lex. sort order

Column family
(sorted?)

Any number of
columns (sorted?)

Timestamp per change

Old values

Current value

HBASE Column Store

write

read

Memtable flush: Memtable into SSTable4

Compaction: SSTables 1,2,3 into new SSTable 1‘

LSM turn random writes into sequential writes (after
Lipcon)

Log Structured Merge Trees

Distributed (Grid) Filesystems

Google File System Design Ideas

• most files are read and written sequentially (bandwidth over latency)
• appending writes were frequent, random writes almost non-existent (no
latency issues)
• huge chunk size minimizes meta-data
• only google controlled applications would use it and could be therefore
co-developed. No strict Posix-compatibility needed
• 1000s of storage nodes should be supported
• Some inconsistencies tolerable (apps deal with it)
• No data loss allowed (chunk replication)
• No extra caching needed
• Only commodity hardware available
• Failover in tens of seconds, no interactive apps
• Permanent check sums in background

Meta-data server

Meta-data server

Processor blade R1

Processor blade R2

Processor blade R3

client

C11

C12

C13

/wacko.avi (C = C11:R1, C12:R2,…

write(„wacko.avi“,
offset)

Lease:
R1:C11,
R2:C12…

Write…

write

Storage grid

Constraints:

-nr. replicas

-Read/update
modes

-Chunk size

-Reboot time

-Reorganiz.

Posix
API ??

Fast
lookup Few meta-

data

Google FS
Architecture

Design Limits Experienced

• change of use from batch processing only to also user facing/internet
facing apps with low latency requirements

• number of files a critical resource: smaller files needed but meta-data
size requires huge chunks

• failover and recovery times too long
• cell size limits reached/multi-cell kludges with static namespaces
• high numbers of requests (e.g. during map/reduce ops)
• inconsistencies critical to some applications and hard to understand

It looks like there is a need for a more general design for a
distributed file system which is based on a distributed
master concept.

Meta-data server

Meta-data serverclient
client

client
client

client

Meta-data server

Meta-data server

Do all masters have the same data? Synchronization based on
multicast/Infiniband (Isilon solution). Will it scale? How does the
network affect distributed algorithms?

Distributed Master File System

Current Trends

1. Automation

2. Data-flow processing

3. Transparency

4. Transactions

5. Mixtures of eventually consistent and
strongly consistent functions

Current Trends in ULS: Automation

PNUTS (Yahoo) automatically shifts master records to the
data center with the most writes. Most ULS are too large
for manual scaling.

Asia Data
Center

Us Data
Center

Master record Slave record

Current Trends in ULS: Real-time data-flow
processors (CEP)

Jack
Pete

Sue

Megan

John
Jill

Graph processing is extremely compute intensive. Data flow processors
use parallelism and avoid the disk bottleneck. Availability is worse
though without intermediate results stored on disk. (see „large scale
graph processing…“), Example: Twitter kafka/storm combo

Complex social
graphs

From: Jeff Dean

The Future ?

• Business Exchange Principles forming the Ambient
Cloud

• Event-driven Systems
• Hierarchical Feedback loops for Self-Management
• Design Beyond Human Abilities: Emergent Systems

The Ambient Cloud (by Todd Hoff)

After all, there are 7 Billion people on this earth! Most of them will have
powerful mobile phones and other personal computing devices.

After Gregor Hohpe, Qcon Talk

Event driven, non-
sequential

Distrib. TAs too
expensive

Forget SLAs
Don‘t know if
service is up

Can‘t control
ordering of service

execution

Can‘t assume
much about

others

Event-Driven Systems

Self-Organization through hierarchically
organized feedback loops

system

subsystem

Actions

controllerActions

controller

monitor

monitor

Goals/
policies

After: Peter van Roy, Selfman.org

From: Linda Northrop, Scale changes Everything, OOPSLA 06

ULS are too big to design, to
important to shut down and
change by plan. They evolve
somehow, grow. Neither
forward nor inverse
modelling works for them.
Could we engineer them if
P==NP?

Richard P. Gabriel,
Design beyond
Human Abilities.

Resources

• www.kriha.de/krihaorg/dload/ultra.pdf (draft)
• www.highscalability.com (Todd Hoff‘s portal for scalability)
• Jeff Dean, google tech talk, Designs, Lessons and Advice from Building Large Distributed Systems
• Ebay talk
• Richard P. Gabriel, Design beyond human abilities
• Linda Northrope
• Andreas Stiegler, MMOG infrastructures (http://www.hdm-stuttgart.de/~as147/mmo.pdf)
• Todd Hoff,

http://highscalability.com/blog/2009/12/16/building-super-scalable-systems-blade-runner-meets-autonomic.html
• Kirk McKusick, Sean Quinlan, GFS: Evolution of fast forward
• [Persyn] Jurriaan Persyn, Database Sharding at Netlog, Presentation held at Fosdem

2009
http://www.jurriaanpersyn.com/archives/2009/02/12/database-sharding-at-netlog-with-mysql-and-php/

• Todd Lipcon, Design Patterns for Distributed Non-Relational Databases aka Just Enough
Distributed Systems To Be Dangerous

• M.Stonebreaker, The end of an architectural era - It‘s time for a complete rewrite
• [Wilson] Jim R. Wilson, Understanding Hbase and BigTable, http://jimbojw.com/wiki/index.php?title

=Understanding_Hbase_and_BigTable

http://www.kriha.de/krihaorg/dload/ultra.pdf
http://www.highscalability.com/
http://www.hdm-stuttgart.de/~as147/mmo.pdf
http://highscalability.com/blog/2009/12/16/building-super-scalable-systems-blade-runner-meets-autonomic.html
http://www.jurriaanpersyn.com/archives/2009/02/12/database-sharding-at-netlog-with-mysql-and-php/
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

