
Course overview - Generative Computing

Look at the resource section at the end for links.

"For learning to become pemanent it must pass through stages of exploration, play
and interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively exploring
them. Humans learn in action" (quote taken from Mannings Publication Co. and their
"in action" series)

The lecture will follow this advice and take you from simple code generation techniques to
advanced meta-modelling using examples and practical exercises, presentations and
discussions and of course theoretical work.

Course Overview

2 / 30

The course "generative computing" has a different focus every summer term:

Automated,
professional
devlopement
environment and
methodology

Covers automated builds, source code control, extensible IDEs
like eclipse (plug-in approach), collaborative features like wiki's,
bug reporting etc. The technical means are embedded into a
concept of agile development with continuous integration, unit
test and so on. The flexibility goals of generative computing are
achieved through automated scripts (e.g. ant), plug-ins and
simple code generation (source code completion, IDE templates,
Javadoc/XDoclets)

Code Generation
Technologies

Covers advanced code generation technologies (templates,
transformational, meta-programming) and the theory behind
(frame processing). Code generators will be used and examined.
Goal is to enable participants to build their own generators.
Models and meta-models play a central role as input for
generation. Domain engineering is shown to give participants a
complete picture of CG but is not explained with its theoretical
foundations.

Domain Engineering Covers feature analysis, Domain Specific Languages, production
line architectures etc. How are conceptual models created? What
is the connection between component architectures and domain

Long Term Course Structure

Course Overview 3 / 30

configurations?

The course is also part of current research activities in the area of development and
runtime environments for mobile and embedded systems. It is also tightly related to the
seminar "design patterns" (simple patterns, architectural patterns, pattern use e.g. to
support extensibility and performance in eclipse, generative patterns etc.)

Long Term Course Structure (Continued)

Course Overview 4 / 30

Courses on Generative Computing/Model Driven

Course Overview 5 / 30

1. Learn how and when to use generative technologies.
2. Learn the techniques behind generative approaches. When do you need a model?

How do you combine components/frameworks with code generation classes? Finally,
how do you BUILD a code generator.

3. Understand why code generation is so important in todays J2EE or .NET
environments

4. Learn the necessary tools: template processors, code generators, compiler-compilers,
XSLT-engines

5. Learn to perform domain analysis and create meta-models and models.
6. Finally learn how to create flexible software by different means: frameworks,

components, generation or mixtures of all these technologies.

It is my firm believe that people who really understand code and generation techniques
will automatically realize the importance of models and meta-models. The first generative
techniques we will use do not require a model. But as we go along we will experience that
dreadful statement "I can't fix it - it's not in the (meta-)model!" more often.

Goals for "code generation"

Course Overview 6 / 30

1. Why code generation? Introduction to generative technologies
2. How to perform a domain analysis, create a model/meta-model and build a code

generator - experiences from a thesis. (With participation from the industry)
3. Simple generation: Java Code Annotation, Java generics, Java doc, XDoclet
4. Template Processors: Eclipse JET and what you can do with it. The theory behind

frame processors.
5. Model driven generation: Eclipse Modelling Framework. Advanced code generation

with this framework. We will use it and also take a look at its implementation.
6. XML/XSL based code generation: using Relaxer, Schematron etc. to transform XML

Meta-data into source code. Why is the functional language approach so successful in
generation? Advantages of "duck modelling approaches (see Sean Mc Grath in the
resources section)

7. Compilation: how ANTLR works. Grammar, recognizers and AST. How to build a
network protocol using a grammar. Or how to validate input using a compiler.

8. Domain and software analysis for a large industry project. Shows how a large piece of
software is analyzed and chances improvement - either through code generation or
organizational processes - are detected. Shows how models and meta-models are a
natural consequence of such an analysis. (With participation from the industry)

Roadmap

Course Overview 7 / 30

Includes commonalities and variations, techniques for generalizations.
9. Meta-modelling (MOF etc.) and Model-Driven Architecture. How to create meta-models

and how they can be used in generative computing.
10. Architectures and dependency management. Some theoretical work on how to

separate business logic from presentation needs in templates. How to decouple
components and interfaces. Externalization of interfaces and implementations using
inversion-of-control type architectures.

Roadmap (Continued)

Course Overview 8 / 30

The seminar will be held as follows:

1. For every session some ADVANCE reading is required.
2. The topic will be presented and discussed - based on the literature
3. We will go into the lab and try it.
4. Groups of students will pick a specific technology, use and investigate it and prepare

a presentation (theory and practical work) for it.

Participants have to be fluent in design patterns, have implemented software systems or
applications and must be able to understand source code by reading it. Some
technologies involve languages other than Java or XML (like Ruby or C++). XSL know-how
is also a big benefit.

Note

Most important: if you cannot spend time to read articles or books during this term: don't
decide to join this course.

Read, discuss and try

Course Overview 9 / 30

During the course a couple of theoretical concepts are needed. Everybody participating
will have to pick up something and present it to the class. Things to cover are:

1. Domain Analysis
2. Feature Analysis
3. Frame Processor Technology
4. Grammar and Language Recognizers (Parse trees and abstract syntax trees (AST)).
5. Meta-programming
6. Model serialization using XMI.
7. Meta-modelling using the Meta-Object-Facility of OMG
8. Functional languages
9. Cross-cutting concerns (Aspect Oriented Programming)
10. Byte Code manipulation (e.g. JDO)
11. Roundtripping and artefact preservation (Generation/manual manipulation)
12. Generalization Techniques. Variations and Commonalities. Scope definitions.
13. Problem domain vs. solution domain. Separation of languages.
14. Generative Design Patterns

Theoretical Background

Course Overview 10 / 30

15. Interpreters and Simulations
16. Data-Driven Design (game design, automotive computing)
17. Component technology, inversion-of-control patterns, API evolution

Theoretical Background (Continued)

Course Overview 11 / 30

This is a list of possible applications for code generation. Participants can decide which
one they would like to use and present.

1. Using the Java metadata interface to generate code. Show how Java code annotations
can be used.

2. Using XDoclet to generate EJB artifacts (entity beans, facades and business
delegates, value objects etc.)

3. Creation of an iptables generator from user input. Chose whatever model/code
generation technology you find appropriate. Take a look at existing generators for
firewall scripts first.

4. Take a look at the source code behind the JET emitter framework in eclipse. Describe
architecture and patterns and show how they are used.

5. Analyse the ecore meta-model of Eclipse EMF. How does it relate to the UML meta-
model?

6. Use the eclipse EMF to model and generate something.
7. Use ANTLR to define the grammar for a network protocol and generate the code

templates for it.
8. Use JavaCC to create a compiler for a self-defined language.
9. Investigate Frame processing technology and show how a public domain frame

Things to try

Course Overview 12 / 30

processor is implemented
10. Use a MDA tool to generate something (andromeda or any other available MDA tools

is OK)
11. Take a Java bytecode modification package and use it to build a simple code

interceptor. This is an early stage of an AOP engine.
12. Get the aspectJ engine and implement something. Explain the basics of aspect-

oriented programming. Do not use logging as an example (;-)
13. Take an executable UML package - if one is available - and use it.
14. Find out how a debugger for a template processor could be implemented (for JSP,

JET or whatever). Why do generative approaches frequently pose a debugging
problem?

15. Take a close look at generators for games (scenes etc.)
16. Use AspectJ to generate log4j statements automatically before and after every

method.
17. Build a little recognizer (lexical and syntax level) by hand using the "Building

Language Recognizers by hand" chapter from Terrence Parr.
18. Try to create test cases automatically from a model. What parts of an application can

be generated?

Things to try (Continued)

Course Overview 13 / 30

19. Desing a small Domain Specific Language for a domain.
20. Perform a commonalities/variations analysis for an intended production line in some

business area.
21. Build an interpreter. Connect the interpreter to a framework.
22. Speculate on the role of meta-data in autonomous computing.

Things to try (Continued)

Course Overview 14 / 30

Required Reading for the next time

15 / 30

1. Jorn Bettin, Process Implications of Model Driven Software Development
Objectspectrum Article
[http://www.softmetaware.com/process-implications-of-mdsd.pdf]. This article is also
available in German
[http://www.sigs.de/publications/os/2004/MDD/bettin_MDD_2004.pdf]

2. Jorn Bettin, Model-Driven Software Development: An emerging paradigm for
Industrialised Software Asset Development
[http://www.softmetaware.com/mdsd-and-isad.pdf]. This article contains the major
forces and patterns behind MDSD. This is required for the third session!

Introduction to Model-Driven-Software-Development, by

Required Reading for the next time 16 / 30

The resources cover freely available information as well as excellent books right to the
topic. All entries are commented to let you know what a paper or book is all about. I also
expect participants to use this literature in case of questions.

Resources

17 / 30

The following information is freely available and taken together is an excellent
introduction to the subject.

1. annotations in Tiger [
http://www-128.ibm.com/developerworks/java/library/j-annotate1/index.html]. More on
Java annotations with examples [http://ramnivas.com/blog/index.php?p=15]

2. (logging with AOP)
[http://www-128.ibm.com/developerworks/library/j-cwt03085/?ca=dnt-610] how about
comparison with autonomous computing logging?

3. The Code Generation Portal [http://www.codegeneration.net] contains good articles
on theoretical and practical problems of code generation. It also offers a list of articles
and generators [http://www.codegeneration.net/tiki-index.php?page=MainArticlelist]

4. Kathleen Dollard on generating code for .NET describes her experience with code
generation on the windows platform.
[http://www.codegeneration.net/tiki-read_article.php?articleId=47].

5. Angie - a frame processor. Architecture of a frame processor
[http://www.d-s-t-g.com/neu/media/pdf/facts_e/dlt21474.pdf]

6. Markus Voelter on Metamodelling (german)
[http://www.voelter.de/data/presentations/metamodelling-paper.pdf]The author also
wrote the book on containers and components (J2EE patterns) and there is lots of

Free Information on generative computing

Resources 18 / 30

 http://www-128.ibm.com/developerworks/java/library/j-annotate1/index.html
 http://ramnivas.com/blog/index.php?p=15
 http://ramnivas.com/blog/index.php?p=15
http://www-128.ibm.com/developerworks/library/j-cwt03085/?ca=dnt-610
http://www.codegeneration.net
http://www.codegeneration.net/tiki-index.php?page=MainArticlelist
http://www.codegeneration.net/tiki-index.php?page=MainArticlelist
http://www.codegeneration.net/tiki-read_article.php?articleId=47
http://www.codegeneration.net/tiki-read_article.php?articleId=47

good information at his site, even for code generation in embedded control.
7. Gilad Bracha, Generics in the Java Programming language Article on the new Java 1.5

generic types [http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf]
8. Tell, Don't Ask. [http://www.pragmaticprogrammer.com/ppllc/papers/1998_05.html]

Sound advice on interface design, class coupling problems etc. Ask yourself: which
of those problems are still relevant once a generative approach is used?

9. From David Flanagans site a short glossary on the key terms of Java generics: Java
generics glossary [http://www.davidflanagan.com/blog/000027.html#more] As most of
you know, I believe in reading code to improve your programming skills. The book
from David Flanagan (Java By Examples) is now in its 3rd edition and contains
valuable source code which makes you understand Java mechanisms.

10. Dave Thomas of The Pragmatic Programmers, LLC on generative technologies, Ruby
etc. With many examples, tips and pitfalls covered. Actually not a paper but an
interview. with a very experienced software developer.
[http://www.codegeneration.net/tiki-read_article.php?articleId=9]

11. Mark Pollack, generating source code using Java Doc
[http://www.javaworld.com/javaworld/jw-08-2000/jw-0818-javadoc_p.html]

12. Jack Harrington, Code-Generation Techniques in Java, An excellent introduction to
the subject [http://www.onjava.com/lpt/a/4133]. Explains code and model driven
generation and the whole process.

Free Information on generative computing (Continued)

Resources 19 / 30

http://www.pragmaticprogrammer.com/ppllc/papers/1998_05.html
http://www.davidflanagan.com/blog/000027.html#more
http://www.davidflanagan.com/blog/000027.html#more
http://www.codegeneration.net/tiki-read_article.php?articleId=9
http://www.javaworld.com/javaworld/jw-08-2000/jw-0818-javadoc_p.html
http://www.onjava.com/lpt/a/4133
http://www.onjava.com/lpt/a/4133

13. Terence Parr, Enforcing Model-View Separation in Template Engines Draft submitted
to www2004 [http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf] Excellent
discussion of template technology and how it interfaces with source code
components. Dsicusses general separation between templates and code and which
techniques violate this principle. Interestingly the author admits that his own engine is
getting always closer to functional language principles even though he claims to be
not of the functional camp. What does this say about model2+ architectures which use
XSL/XSLT to generate web pages?. This paper will be the base for a discussion on
grammar and the whole software technology around "web" programming (JSP, ASP,
PHP, XSL and all those template based things)

14. Terence Parr, Building Recognizers by Hand [http://www.antlr.org/book/byhand.pdf].
An easy to read introduction to parsing. Parr shows how to code a top-down recursive
parser and takes you through all the steps, starting with mixing scanning and parsing
and later separating the steps.

15. The ANTLR Homepage [http://www.antlr.org]. Home of the ANTRL compiler generation
tool (former PCCTS). Find excellent literature on language recognizers etc. from
Terence Parr (look at his work in progress and download the two pdf files "Building
Recognizers by Hand" and "Language".). Take a look at the "getting started"
document. And finally browse through the FAQ section if e.g. you need to understand
the difference between a parse tree and an AST.

16. Antlr faq on What's the difference between a parse tree and an AST?

Free Information on generative computing (Continued)

Resources 20 / 30

http://www.antlr.org
http://www.jguru.com/faq/view.jsp?EID=814505

[http://www.jguru.com/faq/view.jsp?EID=814505]. Find out why an AST is useful.
Combine this with the MDSD rule of doing translations always on the meta-model (i.e.
not on the concrete syntax)

17. Excellent slide and code for compiler construction on .NET
[http://dotnet.jku.at/courses/CC/]

18. Hook up an interpreter to your application.
[http://www.javaworld.com/javaworld/jw-03-2005/jw-0314-scripting.html]

19. Ashley J.S. Mills, ANTLR Tutorial
[http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/a
ntlr/antlrhome.html]. This tutorial to ANTLR is just one of a series of excellent tutorials
from the University of Birmingham. Also available are pieces on XDoclet, Ant,
Docbook etc.

20. XDoclet homepage Sourceforge location [http://xdoclet.sourceforge.net/using.html].
Nice examples and download.

21. Gregor Kiczales, Andreas Paepke, Xerox Corp. 1996 Open Implementation and Meta-
object Protocols [http://www.parc.xerox.com/oi/] On Reflection and Meta-
Object-Facility Protocols, Meta-programming, Open Implementation. Still very good if
you need to grasp the concepts of meta-classes and what to do with them. Shows
how you could implement lots of things which we call design patterns today right in a
proper programming language using meta-object protocols. Learn to understand

Free Information on generative computing (Continued)

Resources 21 / 30

http://dotnet.jku.at/courses/CC/
http://www.javaworld.com/javaworld/jw-03-2005/jw-0314-scripting.html
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/antlr/antlrhome.html
http://xdoclet.sourceforge.net/using.html
 http://www.parc.xerox.com/oi/
 http://www.parc.xerox.com/oi/

reification, reflection, introspection, injection etc..
22. Chris Holmes, Andy Evans, A Review of Frame Technology. Covers other generative

techniques (AOP etc.) as well. Includes classifaction of approaches to code
generation and an extensive bibliography.

23. Sean Mc Grath, Duck modelling in commercial IT systems. Propylon article
[http://www.propylon.com/news/ctoarticles/040224_duckmodeling.html]. Talks about
the problems with grammar based approaches for data model creation. Expects
dynamic languages (python, ruby etc.) to take over long term because of increased
business flexibility.

24. Secrets, Hot Spots and Generatlizations: Preparing Students to design software
families. By H.Conrad Cunningham et.al, Univ. of Mississippi. Report on a class on
software families etc. Shows the problem to teach very abstract concepts to students
with little epxerience in large projects. Good bibliography with titles on variability
analysis etc. Use a framework approach to teach generalization.

25. Adding rules to applications
[http://www-128.ibm.com/developerworks/library/ac-able2/?ca=dnt-67]by Jeff Pilgrim
et.al. How to use a rule engine (ABLE) in your application.

Free Information on generative computing (Continued)

Resources 22 / 30

http://www.propylon.com/news/ctoarticles/040224_duckmodeling.html
http://www-128.ibm.com/developerworks/library/ac-able2/?ca=dnt-67

1. >Evolving Java-based APIs
[http://www.eclipse.org/eclipse/development/java-api-evolution.html] by Jim des
Rivieres, OTI. Tells you what you need to do to allow binary compatibility. Even when
using generative technologies in many cases you have to connect to existing
packages and components.

2. Jorn Bettin Complexity & Dependency Management: Creating an environment for
Software Asset Evolution and Software Mass Customization
[http://www.softmetaware.com/complexity-and-dependency-management.pdf]

3. Floyd Marinescu, Examining the Validity of Inversion of Control
[http://www.theserverside.com/news/thread.tss?thread_id=31676]

4. Martin Fowler, Inversion of Control Containers and the Dependency Injection pattern
[http://martinfowler.com/articles/injection.html]

5. Terence Parr, Enforcing Model-View Separation in Template Engines Draft submitted
to www2004 [http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf] Excellent
discussion of template technology and how it interfaces with source code
components. Dsicusses general separation between templates and code and which
techniques violate this principle. Interestingly the author admits that his own engine is
getting always closer to functional language principles even though he claims to be
not of the functional camp. What does this say about model2+ architectures which use
XSL/XSLT to generate web pages?. This paper will be the base for a discussion on

Architectures and Dependency Management

Resources 23 / 30

http://www.eclipse.org/eclipse/development/java-api-evolution.html
http://www.theserverside.com/news/thread.tss?thread_id=31676
http://martinfowler.com/articles/injection.html

grammar and the whole software technology around "web" programming (JSP, ASP,
PHP, XSL and all those template based things)

Architectures and Dependency Management

Resources 24 / 30

1. Linda Northrop (SEI) Software Production Line Framework.
[http://www.sei.cmu.edu/productlines/framework.html]

Domain Analysis and Software Production Lines

Resources 25 / 30

http://www.sei.cmu.edu/productlines/framework.html

If you can read german I'd suggest to read the article by Markus Voelter on MDA in the
July/August 2004 issue of object sprectrum magazine. It provides an overview to current
issues with MDA. Download from Voelter's homepage
[http://www.voelter.de/data/articles/MDSD.pdf] or a short introduction to MDSD by Dave
Frankel
[http://www.bptrends.com/publicationfiles/04%2D04%20COL%20MDSD%20Frankel%20%2
D%20Bettin%20%2D%20Cook%2Epdf]. The MDSD homepage [http://www.mdsd.info] has
more resources to generative approaches. Softmetaware
[http://www.softmetaware.com/links.html] has a nice collection with MDA/MDSD tools e.g.
OpenArchitectureWare [http://sourceforge.net/projects/architecturware], an open source
framework for MDA/MDSD generation purposes.

1. Jorn Bettin, Model-Driven Software Development
[http://www.softmetaware.com/mdsd-and-isad.pdf] covers MDSD quite extensively
and also mentions valuable MDSD desing patterns - the best I've read so far.

2. Markus Voelter, Parsen und Verarbeiten Textueller Spezifikationen, explains the
differences between concrete textual syntax and the representation in an AST.

3. Markus Voelter/Jorn Betting, Patterns for model-driven software development.
[http://www.voelter.de/data/pub/MDDPatterns.pdf] How to generate a meta-object
protocol layer. How to exploit the model. How to integrate different DSLs etc.
Excellent.

And some more on Model-Driven Software Development

Resources 26 / 30

http://www.bptrends.com/publicationfiles/04%2D04%20COL%20MDSD%20Frankel%20%2D%20Bettin%20%2D%20Cook%2Epdf
http://www.bptrends.com/publicationfiles/04%2D04%20COL%20MDSD%20Frankel%20%2D%20Bettin%20%2D%20Cook%2Epdf
http://www.mdsd.info
http://www.softmetaware.com/links.html
http://sourceforge.net/projects/architecturware

4. Jorn Bettin, Model-driven Software Development Activities.. The process view of an
MDSD project [http://www.softmetaware.com/mdsd-process.pdf]

5. Jorn Bettin, Process Implications of Model Driven Software Development
Objectspectrum Article
[http://www.softmetaware.com/process-implications-of-mdsd.pdf]. This article is also
available in German
[http://www.sigs.de/publications/os/2004/MDD/bettin_MDD_2004.pdf]

6. b+m AG, Generative Development Process
[http://www.architectureware.de/download/b+m_Generative_Development_Process.pd
f]. The b+m generator toolkit is now used quite frequently in the software industry.

And some more on Model-Driven Software Development

Resources 27 / 30

I always try to have all recommended books available in our library. Also take a look at my
special section there where I collect books which should be present at all times.

1. Stephen J.Mellor et.al., Executable UML. Tries to turn UML2.0 into a programming
language as well. Adds executable expressions to UML diagrams. Decide for yourself
if this is the way to go.

2. Harrington, Code Generation in action, also available as e-book. Covers a lot of
different technologies. Uses Ruby and generates Java.
http://www.codegeneration.net/cgia/ [http://www.codegeneration.net/cgia/] Provides
source code as well. Chapter one (introduction to code generation) and chapter four
(building simple generators) are free and required literature for this course.

3. Eisenecker/Cernecki, Generative Programming. The bible of GP. see also
http://www.generativeprogramming.com [http://www.generativeprogramming.com]

4. Cleaveland, Program Generators with XML and Java. Not so deep as Eisenecker et.al.
but with a nice example of domain analysis.

5. Uwe Schöning, Ideen der Informatik, Grundlegende Modelle und Konzepte. Finally a
book for all those which are mentally challanged by theoretical computer science (;-).
Uwe Schöning wrote this downscaled version for people who need to understand the
concepts but not the mathematical proofs etc. behind them. According to the book
more and more computer science faculties also recognize that they have been

Books

Resources 28 / 30

http://www.codegeneration.net/cgia/
http://www.generativeprogramming.com

teaching those advanced concepts for many years completely over the heads of the
students by putting them too early in the study plan. In Ulm where Uwe Schöning
teaches theoretical computer science they have introduced an introductory course at
the undergraduate level and teach the full version now much later. Read Chapter 3:
Grammatiken und Automaten for this course.

6. Paul Clements, Linda Northrop, Software Product Lines, Practices and Patterns. The
bible of product line engineering.

Books (Continued)

Resources 29 / 30

Please note that some of those works may not be released for public viewing by
participating companies.

1. Markus Wichmann, Untersuchung zum Einsatz metamodell-basierter generativer
Programmierung am Beispiel einer Produktdatenbank.

2. Peter Laube, Produktiver Einsatz eines metamodell-basierten Generators für eine
Produktdatenbank. Erweiterungen und Korrekturen zur obigen Arbeit.

3. Michael Taege, Automatische Generierung von Business Componenten auf EJB
Platformen

4. Maurice Tauscher, Generative Methoden und Erweiterungen im Trend Framework
5. Harry Krämer, Domain Analyse für ein large-scale Software Project.
6. Christoph Birkhold, Towards an improved architecture for Game Mechanis.

Thesis work (only my students. I know of several others

Resources 30 / 30

