
Introduction to Generative Computing

Look at the resource section in the overview material for links etc.

Introduction to Generative Computing

2 / 46

1. Learn how and when to use generative technologies.
2. Lern to build code generators.
3. Learn about model, meta-model and code.

Goals

Introduction to Generative Computing 3 / 46

Generative Programming is about manufacturing software products out of
components in an automated way, that is, the way other industries have been
producing mechanical, electronic, and other goods for decades. The transition to
automated manufacturing in software requires two steps. First, we need to move our
focus from engineering single systems to engineering families of systems - this will
allow us to come up with the "right" implementation components. Second we need to
automate the assembly of the implementation components using generators.

(James Coplien in the forword to "Generative Programming by Eisenecker/Czarnecki)

What is Generative Computing?

Introduction to Generative Computing 4 / 46

1. Domain Engineering: finding commonalities and variations in software families.
Defining hot/cold spots of software families. The result is configuration know-how for
a business domain.

2. Metaprogramming: building programs with programs. Includes meta-modelling,
reflection and other techniques.

3. Code generators: Building engines which take templates, models and configuratins
and produce some output.

Jim mentions in his forword something “ dedidedly unobject-oriented behind generative
computing ”. He even sees a time “ beyond objects ” coming up. There could be some
truth to it because current development paradigms show a multitude of technologies
mixed (look at the J2EE web programming and EJB model which combines templates,
scripts, generated database code etc.). Even more, some concepts like components do
not have a representation in OO languages at all. And what can we say about all the meta-
data now held in XML formats outside OO-languages?

Technologies comprising "Generative Computing"

Introduction to Generative Computing 5 / 46

How generative computing works

Introduction to Generative Computing 6 / 46

How generative computing works (Continued)

Introduction to Generative Computing 7 / 46

It is important to notice that generative computing includes much more than just code
generation. The most important part of it - finding commonalities and variations - is
actually completely independent of code generation.

How generative computing works (Continued)

Introduction to Generative Computing 8 / 46

Generative techniques can be used at different times in the development process.

Generation phases and binding

Introduction to Generative Computing 9 / 46

Generation phases and binding (Continued)

Introduction to Generative Computing 10 / 46

Generation phases and binding (Continued)

Introduction to Generative Computing 11 / 46

Reflection is a highly dynamic approach for flexibility - at the price of high complexity and
slower runtime performance. Successful generative computing approaches try to push the
decision making phase into the compile phase. The generated code is highly specialized
for one purpose but runs fast. If the purpose changes the code needs to be re-generated.

Extremely powerful and flexible systems try to make the model information even available
to the program at runtime.

Static vs. dynamic approaches

Introduction to Generative Computing 12 / 46

Generic computing means to treat different things the same way. E.g. by using an abstract
framework type interface one can handle many differnt sub-types in a program.

Generative usually means that something specialized is created which usually reduces
flexibility at runtime - but that in those case the flexibility is not needed because the
generated code has been customized to fit exactly.

Generic types in programming languages like C++ and now since 1.5 also in Java seem to
me to include both elements. The way they are defined looks generic to me. The way they
are implemented and used seems to be generative. We will take a closer look at Java
generics.

Generic vs. Generative Computing

Introduction to Generative Computing 13 / 46

Frequently softwarec companies almost accidentially end up using generative techniques,
driven by the need to create different versions for different customers or by the sheer size
of their - perhaps international - applications which are harder to develop with every
release.

A company has created an application for forms processing - both electronic and paper
based. Customers are banks, insurances etc.

The appliation needs to become configurable. A configuration file is created which allows
some processing steps to be parameterized per customer.

The configuration file grows and soon contains many different things.

The software is modularized and processing functions are now tied to configuration items.
The validity of the forms processing workflow is now dependent on the validity of the
configuration file

The configuration file is parsed at application startup. Errors in the file are extremely hard
to find. Parsing is hard coded and no explicit grammar exists.

The system grows and needs to support different scanning hardware. This is done by
changing and adapting the configuration file. A customer with the same workflow but a
different scanner gets a different configuration file which was adapted using copy and
paste techniques.

The company realizes that they cannot perform in field updates to the software because all

Stumbling into generative programming: A document

Introduction to Generative Computing 14 / 46

configuration files are different and contain both company defaults and individual
customizations done by customers.

The product sells well and creates a big problem exactly because it sells well: Every new
installation at a customer site needs service and support which is increasingly difficult to
provide. Just thinking about new releases causes nightmares for the management. The
service team grows...

This is the moment when the CTO starts planning a re-engineered product. Goals are not
only a better servicable and maintainable software product but also to support new
business areas, e.g. document processing.

Several types of analysis are performed: the new domain is analysed with respect to
commonalities and variations, core features etc. This results in a new business
conceptual model which is expressed in a switch in terminology from "form" to
"document". From this, hot spots and cold spots are derived and turned into requirements
for the new software.

A software internal analysis uncovers weak spots (e.g. no grammar for config file). The
central configuration file is cut into pieces reflecting different aspects of the software:
workflow (clearing functions), document structures, hardware. SGML is used to describe
the structure of the configuration file. SGML dtd's turn out to be too weak to express the
semantics.

Stumbling into generative programming: A document

Introduction to Generative Computing 15 / 46

OO-based modularization of the software results in a CORBA based framework which
dynamically loads all necessary classes at startup. The software is now structured in core/
branch/customer specific areas which are both reflected in the source code control
system as well as in the configuration files. The configuration system slowly turns into a
repository for implementation classes and workflow commands.

Framework classes are full with system internal special coding/naming conventions etc. A
tool is created to generate class templates for the different software domains.

The software is ported from OS/2 to Unix and NT. Many adaptions are done by using the
C++ preprocessor to generate the platform dependent code.

More and more meta-data are extracted from the software and put into the meta-data layer.
Slowly developers understand that extracting those data is also a step toward description
and abstraction. There is no need that the syntax of the meta-data needs to resemble C++.

At this point the following ideas and problems come up:

1. The software is written in C++ which has almost no runtime type information. After the
experience with some simple forms of code generation the development teams thinks
about generating an extension to the C++ system to provide runtime type information.

2. The developers realize that they have a complete model of the documents but they
don't use it to generate the database structures from it. Instead, the whole information
is replicated and the tables are manually created. This results in possible mismatches

processing framework (Continued)

Introduction to Generative Computing 16 / 46

between DB and the data layer.
3. While they are at it, the developers realize that they could also generate a lot of the

end-user GUI layout from their workflow and document model. And on top of that: a
document editor could be turned into a document structure editor as well.

4. It is unclear whether they should put more effort into making the runtime system more
dynamic or whether they should generate more customer specific code from the
beginning.

5. The software becomes more and more complex. A logging sub-framework is
implemented and tied to the class generator. Still, developers need to put in the calls
to the logging system manually.

6. The developers realize that their software is composed of many different aspects
which are somehow mingled in their code. Wouldn't it be nice to generate logging
calls completely automatic? Call parameters and returns are know to the system so
why can't it do that? Which again ends in complaining about the lack of meta-
programming features in C++.

7. The model and meta-data give reasons for headaches as well: A lot of things are not
expressed in meta-models. Source code needs to understand many details of the
model. Should the model and meta-model information be also available at runtime or
just be used at generation time? Should the configuration turn into a Domain Specific
Language?

Stumbling into generative programming: A document

Introduction to Generative Computing 17 / 46

This course will try to make the options and problems clear. At the end you should know
when to use what kind of generative technologies.

processing framework (Continued)

Introduction to Generative Computing 18 / 46

Code Generation

19 / 46

listed with increasing importance:

1. Save time by avoiding repetitious work
2. Improve quality by automating error-prone tasks
3. Further inprove quality by tracking dependencies automatically (e.g. the multi-tier

problem)
4. Save and re-use know-how by using descriptive technologies to capture domain

knowledge. This conserves know-how across changes in programming languages
and technologies and at the same time lets business users use their own language.

Where light is there is shadow as well: increased complexity is one price to pay.
Participating developers need to understand and accept the value of abstractions and
descriptions. Management needs to understand that progress will take time. For the
reasons see also: Jack Herrington, Code-Generation techniques in Java (Resources)

Reasons for code generation

Code Generation 20 / 46

Code Generation Process

Code Generation 21 / 46

This is the process code generation frequently uses. (Taken from Harrington, Code
generation Techniques...). The reasons for code generation can be much simpler than a
generative computing approach. They can be completely confined to IT-internal problems
like conversion between different but equivalent syntax etc.

Code Generation Process (Continued)

Code Generation 22 / 46

Jack Harrington did assemble an overview of application areas and code generation tools.
See http://www.codegeneration.net or his book for more info.

Code Generation Decision Tree

Code Generation 23 / 46

http://www.codegeneration.net

Code Generation Decision Tree (Continued)

Code Generation 24 / 46

Code Generation Decision Tree (Continued)

Code Generation 25 / 46

Surprisingly often IT uses different languages to express the same thing. Surprisingly
many code pieces are commpletely determined through typed information an can be
generated easily. Simple examples for code generation are e.g.:

1. the conversion of type information between different language
2. Marshaling of parameters for distributed computing. Or the generation of automatic

proxy/stub code
3. The generation of API documentation from source code. This keeps doc and source in

sync.
4. Generation of startup-code, e.g. a template for a class definition which follows a

complicated coding standard used in a framework (naming conventions, helper
functions etc.)

Examples for code generation

Code Generation 26 / 46

This example shows how much code in a framework design can be generated. Imagine
how much easier it is for a developer to fill in such a template instead of memorizing all
the rules from architecture standards and team coding standards. The time savings are
enormous as has been proved in "Frameworking" (see Resources)

A simple class template

Code Generation 27 / 46

A simple class template (Continued)

Code Generation 28 / 46

A simple class template (Continued)

Code Generation 29 / 46

This example shows how much code can be generated in modern container (application
server) architectures. We will investigate this further with XDoclet. The same is true for
.NET development.

Generating Glue Code for Frameworks

Code Generation 30 / 46

Generating Glue Code for Frameworks (Continued)

Code Generation 31 / 46

Generating Glue Code for Frameworks (Continued)

Code Generation 32 / 46

A passive generator (Wizard) can be used only once to create some artifact. When the
generation is done the developer takes over the result and improves/completes it. The
class template example from above represents passive generation. There is usual no real
model behind passive generation.

An active generator is e.g. a compiler. It is a permanent part of the development process,
takes a model and transforms it into a different artifact. When the model changes the
compiler needs to run again. Typical for active generators is that the generated code is not
changes by the developer. Or an elaborate system is put in place to distinguish generated
code from hand-written code (checksums, at-generated tags in EMF). Do not use a passive
generator when the artifacts need to change after model changes or you will drive your
developers nuts.

Behind all this lies the ugly problem of "roundtripping". Is it possible to re-import changes
made by developers after generation in every case? What does this mean for the level of
abstraction between model and generated artifacts? Doesn't this imply that only a
transformation into a different but equivalent syntax happened which works basically at
the same abstraction level?

Active vs. passive Generators

Code Generation 33 / 46

A code driven generator contains both code and generation commands. Typical examples
are Javadoc or XDoclets. The advantage is that this type of generator is simple. The
disadvantage is that commands are tied to a specific language used e.g. in the code
pieces. This make platform-independence impossible.

Model-driven generators keep a separate model which drives generation. Therefore
artifact in different programming languages or runtime platforms (J2EE and .NET e.g.) can
be generated.

Code driven vs. Model driven Generators

Code Generation 34 / 46

This is an example from the XDoclet project which uses code attribution (that's why they
also call this attribute oriented programming) to generate EJB helper classes and
functions.

/**
* This is the Account entity bean. It is an example of how to use the
* EJBDoclet tags.
*
* @see Customer
*
* @ejb.bean
* name="bank/Account"
* type="CMP"
* jndi-name="ejb/bank/Account"
* local-jndi-name="ejb/bank/LocalAccount"
* primkey-field="id"
*
* @ejb.finder
* signature="java.util.Collection findAll()"
* unchecked="true"
*
* @ejb.transaction
* type="Required"
*
* @ejb.interface
* remote-class="test.interfaces.Account"

Example of code-driven generation

Code Generation 35 / 46

*
* @ejb.value-object
* match="*"
*
* @version 1.5
*/

XDoclet will use this information to create the proper deployment descriptors etc.

Example of code-driven generation (Continued)

Code Generation 36 / 46

Is this the same? Very bold Model-driven architecture evangelists use examples from
compiler technology to show that MDA is just as possible. They may be overextending the
similarities because compilation creates executable instructioins directly while in most
cases code generation performs only a transformation into a different - not directly
executable - format. Careful practicioners like Harrington differentiate clearly between
both.

Code Generation vs. Compilation

Code Generation 37 / 46

How come many good programmers seem to be able to write code without e.g. an explicit
UML diagram? Let's look at the following piece of code from David Flanagans Thread
programming examples:

public class Deadlock {
public static void main(String[] args) {

// These are the two resource objects we'll try to get locks for
final Object resource1 = "resource1";
final Object resource2 = "resource2";
// Here's the first thread. It tries to lock resource1 then resource2
Thread t1 = new Thread() {

public void run() {
// Lock resource 1
synchronized(resource1) {

System.out.println("Thread 1: locked resource 1");

// Now wait 'till we can get a lock on resource 2
synchronized(resource2) {

System.out.println("Thread 1: locked resource 2");
}

}
.....

The important point is that an experienced programmer (experienced BOTH in Java and
transactions) will recognize that the code inside the first synchronized statement

Is Code also a model?

Code Generation 38 / 46

(including the second) represents a UNIT OF WORK which is supposed to perform
uninterrupted to guarantee the business semantics. The problem is that neither the
concept UNIT OF WORK nor the business meaning behind is explicitly visible in the code.
An experienced business programmer but new to Java e.g. might not catch the problem
behind "synchronized".

So program code represents a model as well - it is just often not made explicit or in a
syntax which is not understood by non-specialists.

EJB e.g. decided to make such semantics explicit through declarative statements and hide
the imperative aspect from the business programmers.

Is Code also a model? (Continued)

Code Generation 39 / 46

Imperative code describes how things should be done. In many cases code generation
creates imperative code artifacts. Those artifacts are by neccessity bound to certain
runtime platforms or languages and are usually not highly portable.

Declarative Code - in our days mostly represented through XML sytax - does only express
WHAT should happen and not HOW. The level of abstraction is certainly higher here. The
downside is that while the WHAT is portable it usually needs some additional "HOW"
pieces added during the transformation into imperative code or even executable code.

Imperative vs. declarative Code

Code Generation 40 / 46

A hotly debated discussion circles around the question whether code generation that tries
to generate executable code directly is easier than generating code which needs to run on
a specific platform like EJB or .NET. Experienced code generators sometimes claim that
end-to-end generation which avoids complex runtime platforms is easier. The reason
behind this - surprising - statement could be that once you have created a powerful model
and meta-model, adding behavior e.g. transaction support is not so hard anymore if it is
done on top of a simple and primitive platform. It gets harder once you have to comply to
highly complex runtime platforms like EJB or .NET with your generated code.

End-to-end vs. Platform Generation

Code Generation 41 / 46

Many code generation mechanisms use some form of template. Templates are also used
in XSL transformations of XML into different output formats. The mechanism shows the
same problems like any other template based generation: How much business logic
should go into the templates driving the output formatting? A closer look at XSL/XSLT
processing shows that the much claimed separation between content and presentation in
XML is actually an illusion. Take this example: Certain output elements need a different
formatting but there is nothing in the model to drive the translation process. Now you
have two choices: either fix it in the stylesheet - thus including business logic there - or fix
the model to include a new element or attribute that can drive the transformation. I guess
now I understand why there is a thing like processing instructions in XML/SGML (;-).

Template Problems

Code Generation 42 / 46

Template Problems (Continued)

Code Generation 43 / 46

The template mechanism for code generation is so popular nowadays that it is worth
taking a closer look at its problems. Read the critical paper by Terence Parr on keeping
templates clean (see Resources)

I am working with a content management team which had used TCL based templates to
render XML data. When they moved to an XSL/XSLT based approach they discovered that
the effort to transform the TCL templates into XSL had little to do with the actual output
formatting. Because TCL is a turing complete language the templates where also used for
many quick fixes for output generation which where not based on model information (i.e.
not in the XML data).

Template Problems (Continued)

Code Generation 44 / 46

Most code generation technologies today focus on data modelling problems (e.g. insure
referential integrity rules in object oriented code, generated database schemas for object/
relational persistence etc. They frequently (like EMF) do not support generation of
business logic yet.

Limits to code generation

Code Generation 45 / 46

The model driven architecture (MDA) defines a phased model for going from descriptive
models via platform independent models to platform dependent models and then to the
final platform itself.

Model Driven Architecture (MDA)

Code Generation 46 / 46

Model Driven Architecture (MDA) (Continued)

Code Generation 47 / 47

Especially the left side of the MDA diagram is rather nebulous. Could it be that this could
be the area of domain analysis (generative computing), conceptual domain analysis (M.
Fowler, Introduction to UML) or Domain Specific Languages? Also interesting is what kind
of information needs to be added to the various models to enable the transformations to
levels with less abstraction. Will this system allow complete tracing - e.g. in case of errors
at lower levels to go back through all the models? The annotations will play a critical role
here if they are not part of the model itself.

Model Driven Architecture (MDA) (Continued)

Code Generation 48 / 48

