Workshop on Generative
Computing

Workshop on Generative Computing,
Model-Driven Architecture (MDA) and
Model-Driven Software Development
(MDSD)

Medieninformatik-Forum, 1.7.2004, Hochschule der
Medien Stuttgart

Prof. Dr. Edmund Thler
Prof. Walter Kriha

1. Generative Computing at HDM — What we do

Agenda

2. Model-Driven Architecture in Practice (Markus Reiter, Joachim Hengge,
Softlab/HDM)

3. Automatic Business Process Composition using Semantic Technology
(Christoph Diefenthal, IAQ/HDM)

4. Metamodelling in Smalltalk (Claus Gittinger, Exept AG)

5. Using Generative Computing in a large scale EAT framework (Marecel
Rassinger, ¢2e basle)

Generative Computing at HDM

Diomain Iodelling and Concepts,Production Line Softweare, & pplication
Platform Development, Feature analysis, FAST ete.

Language, Grarraars, Grenerative technologies (templates, template ﬁl" modelling

Ilachines (parsing etc. processors, rmodelling and meta-raodelling, 40F, d:ie]j:-

from theoret. cormp. arul transformations, bytecoce APIs, rile engines, o &

science 4515, ML .

processing
; - Professional Developraent Exsrironraent: Infrastructure
m‘ &%Zth:;thods antomatic build, unit test, source code View (code
- control reviews etc.)

Industry
Projects,
Thesis Work

Production Line oriented software development needs a

lot of supporting knowledge and technology

Generative Technologies (this term)

IPTahles Rule Engines

Tleta-Tvlodelling
Parsing Technology

Modelling Fraroaork
(Eclipse EMF)

FML Transformations
(Relaxer)

Sorce Code annotations
(Javadoe, XDoclet) BCEL)

Frame Processors
Template Engines

From each technology we learned different things, e.g. to recognize limitations (when
do you need a model or a meta-model?). We started with generation, moved to
modelling and ended with parsing and AOP.

Bytecode Modification AFT

Java Grererics

A3L languages

R R - N R T

What we tried

Building a Struts aware generator which reads the Struts model and generates/validates artifacts (you can see it
later at media night presentations)

Gerneration of C3WV file readers from Eclipse JET — driven by an 2L model of the CEV format
Generation of a notepad like editor with Swing GUI using a frame processor (2L based)
Adding logging statements statically and and load time using bytecode generation API (hoel)
Lexical scanning and parsing using ANTLR and self-defined gramtnars

Investigate IPTABLES tules producing generators

Generate glue code from annotated Java (Javadoc, XDoclet)

Using EWF and GEF to create a model of a forum application which can be filled in.

MDA frameworls, genetic algorithims etc. just for the fun of it. ..

What we learned

1. Code annotation is easy. Mostly for itnplementation specific add-ons (deployment descriptors or documentation).
HDoclet provides extensible frameworle Gramularity limited by what parser recognizes.

2 Tetnplate engines are sitople to use. No model required. Can be too powerful (see Terrence Parr onlanguage
restrictions for tetnplate engines). Required features are e.g reading and reacting on model attributes and
dynarnic sub-ternplate inclusion.

3 Frameprocessors need a definition of slots, i e a good knowledge of hot/cold spots of the domain. They keep
template results in an in memory AST and delay code generation (serialization) till the end. Easy, powerful and
no tmodel required. Breals down when granularity (slots) no longer sufficient.

4. Modeling Frameworks read several model formats (UWL, VL ete.) and transform it into an instance of a meta-
maodel (ecore for eclipse). The meta1nodel needs a meta-meta model which can use the same classes. A W3
maodel iz not always available or tools do not useit. Gramular capture of features iz possible. Lots of
transfonmations on the same level.

5. Bytecode manipulation APIs require a lot of VIV know-how but allow transparent addition of features. Interesting
but cumbersome and hard to use.

f. Aspect Oriented Programming uses e.g bytecode manipulation to add functionality. Granularity is only limited
by what the Aspect parser support. In theory every target language staternent or terrminal could become a pointout
for extension. Incredibly powerful but cries out for modelling of the aspects to avoid total chaos. MNeeds integrated
wiew of all aspects.

7 ML processing with Relawer: fast, easy MNeeds access to meta-data in generated java classes, e g to support an
editor which needs to offer legal options.

g Gratnrmars, languages and automata are usefil constructs to understand parsing and generation issues.

9. 4GL languages are incredibly effective. (16K->400K->16ME generated code) but arereally domain languages
and therefore have a built in acceptance problemn outside the specific dotnain,

What we didn‘t touch

Everything that has to do with domain analysis, production line software etc. This
will be handled in the next lecture on generative computing,

Model-Driven Architecture (MDA) in details. We just didn‘t have the time (;-)

What we would like to know

‘What could a really powerful programming language do? Is it true that a
domain language needs to be different from the implementation language?

‘What about interpreting a model instead of generating code from it?

UML and XML — what is their relation? Can UML really describe domain
coneepts? Is XML only a good serialization format?

Is there a proven way to generate meta-models and meta-meta models and to
use them for code generation?

Can we build an editor for eclipse EMF that understands M3 MOF and edits
M2?

10

Surprise 2: Model-Driven Software
Development

1. A multi-paradigm approach (domain analysis, meta-modelling, model-driven
generation, template languages, agile software development, open source
infrastructure) from: Jorn Bettin, Model driven software development, june
2004

2. Compared to MDA relaxes several prineiples: not bound to UML/MOF, DSLs
may be non-graphical. No tools based round-trip philosophy

3. MDSD patterns like: do not work on the serialization format, extract
infrastructure, two (or more) phase generation to ease transformation and allow
adaption to different platforms.

4. Provides technology and workflow to implement production line architectures

Markus Voelter and Jorn Bettin are about to release a book on this subject. Markus
Voelter will give us a detailed introduction in fall here at HDM.

Surprise 1: Theoretical Computer
Science is useful!

Teams working with generative computing need a good understanding of
languages, grammars, parsing and automata to be effective. (see Markus Voelter
on MDSD in Objeet Spectrum June 2004)

Theoretical computer seientists change the way they where teaching the subject:
»Uwe Schoening, Ideen der Informatik™ is readable both for computer science
students and practicioners.

11

And now have fun with:

1. Model-Driven Architecture in Practice (Markus Reiter, Joachim Hengge,
Softlab/HDM)

2. Automatic Business Process Composition using Semantic Technology
{Christoph Diefenthal, TAO/HDM)

3. Metamodelling in Smalltalk {Claus Gittinger, Exept AG)

4. Using Generative Computing in a large scale EAT framework (Marcel
Rassinger, ¢2e basle)

