Computer Organization - for System
and Application Programmers

Lecture on

Computer Organization
for System and Application Programmers

Walter Kriha

(Goals

* Learn a canonical computer architecture and associated data and
control flow

* Understand the instruction set as the programming interface to
the cpu

* Learn how peripheral devices are accessed
* Understand the event based structure of CPU and OS
* Learn about the memory subsystem and how the OS handles 1t.

* Think performance

Thig part will not turn you into a hardware or system software specialist. But it will
provide a basic understanding of how a computer works. Some patterns like the
cache handling algorithms are equally important for application design.

Overview

» State machines and clocks

« Computer architecture, components, data and control,
protection

« Computer organization: memory, devices, IO, interrupts
* Firmware
* Instruction set, assembler and how a program 1s executed

* The execution environment of a program: memory, CPU

How 1s a byte written to a printer? How does a computer react on inputs?

Principles

« Layering of functionality to provide abstractions and
independent variation

« Caching data to save access costs

* A bus to provide a means for future extensions
« Synchronous vs. asynchronous communication
* Speed vs. size

« optimization vs. genericity

You will learn that many low-level hardware principles or architectures are actually
general principles: e.g. a bus 1s a communication platform and interface which can
be represented in hardware OR software. Caching 1s a performance principle also in
hardware OR software. Many of those principle will be extremely useful for
application development as well.

Clock

Synchronous Systems

TCEPOIRE

request

Hardware mostly operates in a synchronous mode: request time, delay etc. are strictly
defined. If a response does not come after the specified delay the system halts with a
fatal error. Compare this to network communications in distributed systems where
errors usually show up as timeouts. Simple combinatorial logic depends exclusively
on the clock for result calculations.

Combinatorial Logic

Input 0 ——0 S, Sy E | Output

4-1
X X 0 7
Input 1 —— 1 MUX
— Output 0 0 1 |Inputo
Input 2 ———»42
P O 1 1| Inputl

Input 3 —>3¢g s 1 0 1 {Input2

“‘ 1 1 1] Input3

(b)

A simple multiplex component with truth table. From Carpinelli pg. 17. See next
slide for implementation.

Implementation of Combinatorial Logic

Input O Y
|/
Input 1
Input 2
L S
Input 3 Y
L/
S5 So E

(a)

A simple multiplex implementation. Please note that the result depends ONLY on
the inputs provided. The component itself does NOT keep state.

State Machines

Inputs +>'

State
Machine

State

> Outputs Alarm —-

Weekday —-

(a)

State
Machine

State

(b)

Turn off
alarm

A State Table

Current Inputs Next State Outputs
State

asleep Alarm: on Awake n Turn oft

Weekday'X | bed alarm

Awake n Alarm:off Up Do not turn
bed Weekday: Y alarm off
Awake n Alarm: off | Sleep Do not turn
bed Weekday: N alarm off
More states:

asleep with

alarm off,

up,

A state table captures all possible input events, states and output events. Inputs have
to be unambiguous, 1.e. for every state an mput event can occur only in one row of the
whole state table. State machine simulators (like Rhapsody or statemate from ilogics)
check state tables for consistency. (taken from Carpinelli pg. 54, slightly mod.)

A State Diagram

(Moore)

Alarm Turn off Alarm = Yes

Awak
Alarm' - i "wges Alarm

Alarm' A Weekday'

Alarm' A Weekday
Y

Awake
and u

1 (Always)

A state can either shows states in bubbles and events as arcs. Outputs can be shown
together with the state (Moore machine) or with the events (Mealy machine). Inactive
outputs are not shown. State diagrams capture the same information as state tables.
Moore machines are easier to implement because their output depends only on the
current state. But if a state has different inputs resulting in different outputs a Moore

machine needs a separate state for each output.

A State Diagram (Mealy)

Alarm/1

Awake
Alarm'70 - in bed Alarm/ 1
Alarm’™ A Weekday' /0 Alarm' A Weekday /0

v

Awake
and u

1 (Always)/0

(b)

A Mealy machine shows mput/output combinations at the arcs of a transition.
Different outputs can end up with the same state. (See Carpinelli chapter 2)

Von Neumann Machine

Address bus
CPU < > Memory
(registers, program counter (instructions and data
ALU, decoder Data bus mixed)
4 >

The speed of the address and memory bus is very critical for a viNM as it must read
instructions and data into the CPU for processing.

Von Neumann Machine: Execution Cycle

Fetch

Read the address of the next instruction (PC) into instruction register.

Decode

The decoder part of the CPU translates the instruction into an executable format
Fetch operands

[f the operation needs operands (parameters) they need to be accessed, eg.
Through memory cycles to RAM.

Execute

The ALU performs the operations and writes the results to registers or memory.
Result flags are set.

Update instruction counter

The Program Counter is updated and the cycle repeats itself

Fixed CPU resources work alternating on arbitrary instructions or data

Morphware and Configware

Programmable: Type of flexible Computations, whereas a Sequence of

a) Instructions is loaded and executed in the Time Dimension
by using one or several Processing Elements

Type of flexible Computations, whereas only one or a few
Instructions per Processing Element are loaded and the

b} Execution is performed in the Dimensions of Space and Time
(-> Area) concurrently

Configurable:

,/-f Reconfigurable: General Term, which expresses the Features of 3
Hardware Architecture to be configured more
‘:) than once (-> Technology dependent)

Dynamically Reconfigurable:

d) Type of Reconfigurations, which realizes Modifications of
Configurations during Run-time of the System.

This is also called run-Gime reconfiguration (RTR), on-the-fly
reconfiguration or in-circuit reconfiguration

From: Morphware and Configware, Remner Hartenstein, TU Kaiserslautern
http://hartenstein.de . Also in “Nature based computing”. Traditionally algorithms are
flexible, resources (CPU) are fixed. Modern designs of FPGAs make resources
flexible ag well. The configuration usually happens BEFORE runtime, sometimes
during runtime. Configurable resources do not suffer from the von Neuman
bottleneck. Configware 1s much cheaper and faster than ASIC development.

Route Configuration

i el 2 ™ —
T "'er'}
= H * b ol : * } T3
X (-4 CLB {1 CLBH 1
I .E.I... - H -
N, N — s, ol S RN SN N W |. esdes - .l.'g:
s (XY o LY (ENN RRAL RAA &
3 :_B::.. it _ﬂ e :
o Harg! : ;]J_] i :
% 1 ! s ! v
i 41T i1l lm :
3 i8] T : ‘
: I >
3 ey xg"‘ e - L
" - L e A H Y A LT ER
. - sadaaalon VAN -
AL : L i B
'l—l'r--. 'l - H » - b
1L+ CLB |= + CLB
LJr;I.-_ . r
" - .. -] s e - 1 | - .|
{ -EIL i 3]’ WA
3 2T i i ;
$ IR E Blrnlls
i | |] =l i
H | H] I-Jl' IhE
Aara A rrmm el o 00.0.0. 00 o mmm i
- 11 ._.’.:h... . L o] ... Lo
. - }—
1 1 i - L
EJ 3 ri - Sy |
: . o : v ni
AT CLB 04—+ CLB F4F0
: - =L : 1.
L\\m\\\\\u\\\\\\‘ “\\\MH\M LI\\\\'\ e l\\\\'\\%\{

Configurable logic blocks are connected (,,programmed*‘) at config time. From:
Morphware and Configware, Reiner Hartenstein, TU Kaiserslautern
http://hartenstein.de . Re-configuration can mean self-healing in case of defects
through radiation etc.

16 / 56

Flowware vs. Procedural Prog.

Softmrare Lanounoss

Flowware Languages

Sl o] et SR § B2

mianagscd b

reacl SRt IS TTIC ro.

a0t (mmstruction acddress).
s (tooinsrnterion acdeds
ILETIC IO lo0p. NSstlg. je

paraiied [0ops_ escapes,

ETrcnon siream branching

=

-;1 at loop.

o dara zcddiess

NELrlg.

] =] e S o B l=
[i E 2 ERS o -|1_' o

datza manipu-

lation

Prograrnn Coumnnsr

yingle or mulnpls
data counter(s)

| B e N

no ovarh=ad

1IAS517® N1211101y Cvele

overheadd

drasticallyv reduced overhead

.Currently a typical CS graduate with von-Neumann-only mentality does not have the skills
needed for HW / CW / SW partitioming decisions, nor the algorithmic cleverness needed to

migrate an application from software onto an FRGA “ (from Hartenstein..)

Instruction Sets

+ Bytecodes for virtual machines
« Machine code for real CPUs

Functions of a CPU Instruction Set

— Arithmetic (integer, decimal)

— Shaft, rotate (with or without carry flag)

— Logical (and, or, xor, not)

— string (move, compare, scan)

— control (jump, loop, repeat, call, return)

— mterrupt (mnitiate, return from, set, clear IF)

— stack (push, pop, push flags, pop flags)

— memory (load, store, exchange - byte or word)

— processor control (mode, escape, halt, test/lock, wait, no op)
— mput/output (in, out, byte or word)

— musc (adjust, convert, translate)

Some of these functions are critical and cannot be used in user mode by applications.
Those are so-called privileged mnstructions (e.g. halting the CPU, input and output to
devices, changing the mode bit). If those instructions where public, an application could
easily destroy other applications or the whole system, disk etc. Only by using special
commands (traps) can application switch over to run kernel code. This kernel code has no
limitiations and can do whatever the instruction set allows.

Byte Code for Virtual Machines

Java applet
source code

Java compiler

|
(o)

Java VM for Java VM for Java VM for
Windows Pentium PC G4 Power Mac SPARC UNIX workstation
Windows G4 SPARC

Pentium PC Power Mac Unix workstation

A Java Bytecode Example

clazs stringtest |

static public vold main(8tring [] args)

{
String testl = "AnExample”;
String teztZ2 = "AnExample”;
1f (testl == test2) |

Syvstem.out.printlni,Expscted™);

here a dump created with: javap -o -1
Method vold main{java.lang. String[])

0 lde #2 <String "AnExample”> <-—- laden des
operand stack wvom

constant pool index 2
2 astore 1

3 lde #2 <8tring "AnExample”> <-—- gleicher
Index hier verwendet:

5 astore =2

& alecad 1

7 aload =

8 if acmpne 18

11 getstatic #3 <Field java.io.Printitream
out>

14 ldc #4 <S8tring "Sach ich doch"x»

1A inveokevirtual #5 <Method wvoid
printlnijava.lang. String)

19 return

Anunderstanding of the internal Java VM model is needed. The Java bytecode assumes an
array of local variables (named xxx_1 or xxx_2 etc.) and an operand stack. Operations are
performed on the operand stack only where e.g. an add instruction pops two values from the
stack, performs the add and pushes the result again on the operand stack.

Instruction Set Example

4 bits 2 bits 2 bits 2 bits
opcode | operand | operand | operand
#1 #2 #3
(a)
4 bits 2 bits 2 bits
opcode | operand | operand
#1 #2
(b)
4 bits 2 bits
opcode | operand
(c)
4 bits
opcode

(d)

ADD A,B,C (A=B+C)

MOVE A,B (A=B)

ADD A,C

LOAD B
ADD C
STORE A

PUSH B
PUSH C
ADD
POP A

(A=A+C)

(Acc=B)

(Acc= Acc+C)

(A= Acc)

(Stack=B)

(Stack=C,B)
(Stack=B+C)

(A =stack)

1010 00 0Ol

1000 00 01
1010 00 10

0000 01
1010 10
0001 00

0101
0110
1010
1100

The Instruction Set as an Abstraction (Interface)

mowve RI,IUXEE

memory interface

TWrite Cotmmand

memory (3-bit)

L

Adresz: 01101110

Addresg OutE

00000001

v
Instruction P
T H,x"ﬁddress Fegister
Decode . 0s6E

Eegister B1 Data Eegister

¥ ¥ ¥r{¥r.¥YyrT¥Y¥ITyY¥rTr

Daata: 00000001

Y

Nzl

N1

¥ ¥ Y¥YrT{¥yryxryvrwr

The simple move instruction tells the CPU to put the contents of register 1 into the data
register and to put the target address 0x6E into the address register. Then the CPU puts
the write signal onto the control line, address and data register put their content onto the
memory bus and the memory interface understands this as a write command. It takes the

data from the bus and puts them into the requested address.

Assembly Language Processing

Assembly language
program for processor X

|

Y

Assembler for
processor X

Other processor X
object files

Y

Processor X
object code

Y

J—

Process X
linker

Y

Processor X
executable file

Y

Computer with
processor X

Computer Architecture

CPU Architecture
Address, Data and Control
Input/Output

Interrupts

CPU Architecture

Control bus signals

Address bus Dat:}l’bus

Control signals
f
Control ! o
unit B /
Data values
Control signals Registers
Data values (operands)
< -
ALU
a >
Data values (results)

Read and Write operations

clock | clock | | clock | clock

cycle 1 | cycle 2 cycle 1 | cycle 2
CLK CLK

Address bus — < Address >- Addressbus-< Address =)—-

Databus ——————- (Data)— - Data bus -~ -(Data)- -

READ L WRITE L

(@) (b)

Subsystems

16
A5—-Ag s ' -
Relatively 8
Simple D7 Do < f A gl sekiardd
CPU Subsystem
READ ' -
WRITE >
Y Y Y
1/0

Subsystem

Devices and Peripherals

Bus Systems
Interrupts vs. Polling
Bus Masters (DMA)

Device Driver Architecture

I/O Subsystem

Address Bus ’ Ay
! ! /
Data Bus Memory
P < / / I
CPU ! A ! A ’ Subsystem
Control Bus |, : :
» 7 7 7 >
4 / 4 4
4 4 4 4
: Y Y Y Y :
| |
|
: 1/0) 1/0 .
| Device Device :
: |
| |
| |
| |

CPU

BG

Bus

Mastering (DMA)

Address Bus

A

L~

“ Data Bus
'\
T Control Bus
Y Y
» BG |/O Data = <
DMA
Controller
BR 1/O Control |= >

Memory

I/O
Device

CPU

Serial Communications

Address Bus

— T >
1 Data Bus
< T > Memory
1 Control Bus
e I -
Y Y y
UART ~———— Modem

External
device

Device Events:

CPU

polling vs. interrupts

L4

Y

An external event
changes state in
the dewice

0x301

Y

h

Y

0300

ICPort

Control

controller

Parallel
Peripheral
Interface Chip

{e.g. Intel 8250

What happens if a device has some data ready for a program? How should the CPU
learn about this fact? With interrupts a device can signal a state change
ASYNCHRONOUSLY at the CPU. This 18 more complicated but performs better.

Device Events: polling

Prografm memnory

CPU

L4

while (true) {
if (readControl()) {

Y

Y

result = readDatal);

return result;

1

0x301 0x300
yYrr
An external event Parallel
changes state in [OPort Control Peripheral
the device > Interface Chip
controller (e.z Tntel 8255)

With polling the CPU regularly checks the status register of a device controller to see if it
signals new data. If it does, the CPU reads the data port from the device Controller. If the
CPU does not check freuquently enough, data can be lost. If it checks too often,
performance suffers because the cycles are missing for other tasks. Polling 15 a design
pattern that can be used everywhere, not just in device programming. A special case of
polling 1s ,.busy waiting* where the waiting time 18 guaranteed to be so short that setting
up and handling interrupts 1s actually slower. E.g. multi-processors sometimes use spin-
locks where a program polls for access to a resource instead of giving up control and sleep

Device Events: Interrupts

Prografn memory

0

Py WVector: 2 . 1
& q 2
get Vector > /

handlePPI () {

result = readDatal);
Interrupt line sendToDriver result),
)
030 0x300
] Yvyy

An external event Parallel
changes state in [OPort Control Peripheral
the device > Interface Chip

controller

{e.g. Intel 8250

Here the device has a direct connection to an interrupt line of the CPU. The device uses
this line to report an event. The CPU (if interrupts are not locked for the moment) will
immediately stop regular processing, save the current state and start interrupt processing.
The CPU will ask the device for a vector which 1s simply an index into a table of interrupt
handlers in memory. When the CPU has the vector it will load the start location of the
interrupt handler and run it. The handler gets the data from the device and forwards 1t to
higher device driver levels. Some CPUs do not use vectors and leave saving the current
state to the handler code. This can perform better but 1s harder to program.

IRQ

CPU IACK

Data

Interrupt Request

Interrupt Acknowledge

Interrupt Vector
[

>

IRQ

IACK

Vector

!

(a)

Device

IRQO
IACK O

IRQ 1
JIACK 1
CPU

IRQ n
IACK n

Data

Device #0

Device #1

Device #n

Device Controller: Abstraction over Devices

CPU

L A R

Titner Chip

Frequency

Dz (1) Dx=301 Q300
IOFPort Control
H"‘Speaker Circuits & OMN/OFF

memory (3-bit)

Program

01001101010
10100101010
10010100111
10101110101
01010101010
11111110011
010

Parallel
FPeripheral
Interface Chip

(e.g Intel 2550

Device Controllers create an abstract interface (low level) over hardware. Typical
controllers offer data and control ports where one can select different modes of
operations and exchange data with the device. Here the 8235 drives with on port the
speaker ON/OFF signal which can be used to make the PC speaker beep. Notice that to
the CPU the controller looks like some memory regions.

Beep

pospeaker equ 0x300 IO address of speaker port
timers equ Oxzd00 IO address of timer chip port
wait equ OxFFFF s how long atone should last
code
in al, prepeaker . save the current speaker status
push ax . zawe it on stacle
or al, 0=03 s set 2 lowest bits
out pcspeaker, al . write it to spealer (O
mow al, 20 . initial frequency
Lz out tiumer?, al . set frequency in timer
mov cx, wait . loop count to hold tone
L3 loop L3
sub - al,l . change frequency
Nz Lz . start playving new note
pop ax . get old port status from stack
and al, 0xFD . clear two lowest bits (OFF)

out

pospeaker, al

. write to speaker port

this little program uses timer chip and parallel I/O chip of the IBM PC to play some tunes on
the pc speaker. In effect, the timer chip offers a method setFrequency(Byte frequency) and
the PPI offers startSpeaker(Boolean state) and Byte getState(). Without an operating system a
programmer who wants to use the speaker would have to paste this code into the program.
And what would happen 1f two programs would like to use the speaker at the same time?

Device Driver (lower half)

PEIVATE beep(int £) /f determines beep frequency

[f*a CTEL-(3 written to a terminal will make it beep. On a PC this means transforming
the CTEL-G event into a request to the PC-speaker. This routine 15 hardware dependent */

wnt =, I
lockd);, ff dizable interrupts
port_out(TIMEES, Oxi6); ff set timer mode to channel 2
port_out(TIMEEZ, £ & BYTE), /Y load low order bats of frequency into timer
pott_out(TIMEEZ, (f==5) & BEYTE); /f load high order bits of frequency into timer
port_in{SPEAEEERPORT, &x); /f save current speaker port status
port_ouwt(SPEAKERPORT, = | 023);, Neet two lowest bits at speaker port
for (e =0, k = WATTTIME, k++)

o M do nothing but wait
port_out(SPEAEEEPOET, x), /f set speaker port to previous state (turn beep off)

unlock(); /Y enable interrupt

}

Notice that interrupts are locked during beep and that the delay 1s fixed. You would not want
to expose this directly to applications as they could use a long delay to basically prevent the
operating system from handling events. A better implementation would use a queuing
mechanism instead of just locking interrupts. (example modeled after Tanenbaum, MINIX
pg. 522). Interrupt routines also belong to the lower half.

Device Driver (upper half)

From Application: upper half of driver
switch (tty_tness.m_type) |
case TTT CHAER THT: do;;harfé&%rmess); breal;
case TTY EEAT: do_re‘;;i(&ttymess}; breal;
case TTY WEITE: do_write &ttymess); breal,
case TTY IOCTL: do toctl &ttymess); breal;
case TTY CANCEL: do_cancel{&ttymess), breal;

}

The upper half of a driver recerves commands from applications, sometimes through another
even higher level interface. Generic device processing 1s done by these upper half routines. If
device specific processing 1s necessary, then the lower half routines are called. This example
1§ taken from MINIX (Tanenbaum) where the device driver 1s itself a process running in
kernel mode.

File Abstraction on top of Driver

Unix filesystem Device directory

T / devices:
usr etc dew

Cchs-r--r-- 1 root root 60, 0 Moy 7 21:35
Command: 15 -1 fdev COnSale

gives:

chw-r—r— 1 root root 60, 1 MNow 7 2735 tyl
crw-r—r-- 1 root root 60, 2 Moy 7 27135 ty?

Unix systems put another abstraction on top of devices: everything is a file. By using file
commands applications can treat devices just like regular files. Please note that we have not

talked about security yet but this mapping seems to be an excellent point to do access control
as well....

All Intertaces ftor devices

fdeviconsole or fdevitty] for application

!

iZ language runtime
library

open(, fdeviconsole,)

Y

File abstraction

readl), write()

High level tty driver

do_read(),
do_ write()

‘________

Console dependent
driver

beep(50)

—=f

Terminal dependent
driver

Encapsulating hardware differences and offering a higher level interface has
been the main operating system job at the beginning. Multi-tasking and multi-
using has even more demands on an operating system with respect to resource

sharing, protection, performance and security.

Memory Hierarchy

fast slows

access time

B I I -

stnall, - large,
: capacity
EXPENSITE cheap

Access time and capacity are exactly reversed. To keep prices reasonable a
compromise between size and speed must be met. The trick is to use caching as
much as possible to keep freqeuently used data in the small but fast areas of the
memory hierarchy. Virtual memory management allows us to treat non-Ram space
like discs as memory extensions invisible to programs.

44 | 56

Basics of Resource Management: Caching

read data

CPTT I I Eegular Dynamic Eam memory

write back with asynchronous update

Y

Y

write through

Caching 1s quite easy as long as we do not have concurrent processes or even worse:
multiple CPUs working on shared memory. These CPUs can end up having
different versions of one memory location in their caches. In most multiprocessor
design direct write through 1s used therefor.

Different Multiprocessor Memory Architectures

4

M M

P | P
Shared bus

Global

memory

(@)

N

(b)

Caching Architectures (1)

E4kh of main memory lkb of cache memory
1111111111111
1111111111
16 bit lgd‘?‘:
addresses agaresses
QOa0000000
0000000000000000

A cache 1s only a mapping function that maps a larger number of resources into a
much smaller set of resources. This function can be a) direct b) associative ¢) set-
associative. In any case 1t requires that the resources are chunks of equal size. A part
of the resource (e.g. a part of its address 1s used as index into the cache). If the
whole address 1s used 1t 15 an associative cache where the exact position in the cache
does not matter. Set associative 18 a mixture of both and works like a hash.

Caching Architectures (2): direct mapping

The 16 bit address 1=
split into atag and an
index part. The index
part must have the size
of the cache {10 bit for
a lkb cache)

1111111111111

16 hit
addresses

1111111111

1kb of cache metnory

111111

index

111111
6 bit

tag

l index

tag

addresses

000000

1111111111

10 bit
addreszes

0000000000

For a directly mapped cache the original address which comes from the address
register of the CPU 1s gplit into tag and index fields. This effectively partitions
memory in 64 1kb blocks. Every index address exists 64 times in all these blocks.
The tag and the index form a unique address. Every address can have only one
physical position in the cache. This means if a program uses the addresses 111111
0000000000 and 011111 0000000000 frequently the cache will permanently change
contents for the index location 0000000000. This 1s a disadvantage of the directly
mapped cache.

Caching Architectures (3):

The 16 bit address 1=
split into atag and an
index part. The index
part must have the size
of the cache {10 bit for
a lkb cache)

1111111111111

16 bit

associative mapping

lkb of cache memory

index

addresses

1111111111111

Y

l index
tag

16 bit match
register

fully
assoclative
cache

An associative cache does a parallel search of all cache locations for the pattern
supplied. In this case the oniginal address (16 bit) supplied by the CPU 15 matched
in one go against all cache locations. If the pattern is found somewhere and it 1s
vahid (wvalid bit not shown) then the data content 1s returned. Associative memory
does not bind a key (address) to a certain position in the cache and avoids the
thrashing seen in directly mapped caches. Disadvantage: much more expensive.
Mostly used for Translation Lookaside Buffer (TLB) in memory management units.

Arc. (4): n-way set-assoclative mapping

The 16 bit address 1=
split into atag and an
index part. The index
part must have the size
of the cache minus the
number of ways plus
GHLE,

1111111111111

16 hit
addresses

111111111

index

1kb of cache metnory

1111111

tag

l i index
index

512 locations in cache

This architecture tries to combine the low price of direct mapping with the speed of
associative mapping. Every cache location can have more than one data content,
identified by the tuples (tagl, index) and (tag2, index). With two possible tags per
mndex location we speak of a two-way set associative cache.

Design Problems in Caches

* Determining the size of the cache: how big should it be?
what 1s the most cost effective size?

» How 1s data consistency guaranteed? This is especially
important if concurrency issues are present, e.g. multiple
CPUs. How does the cache write data back to RAM?

» Replacement policies? When and how to replace cached data
with others. Avoid replacing what will be needed soon again.

In every cache you build (believe me, even as an application programmer you will
build a number of caches in your live..) you will have to answer those questions.

Determining Cache Size

line size: how many bytes have
to be read if a cache line must
be loaded from RAM?

How many cache locations

are needed?

L 3

Bigger 1s not always better. If the line size gets too big reading and writing many
bytes for each cache entry takes longer and longer and may actually reduce speed.
The number of cache locations seems to be less critical. Modern systems have ever

larger caches.

Cache Consistency

CPU

1 ;O data

Eegular Dynamic Eam memory

CPU

The biggest problem of caches — hardware or software — 18 to keep caches consistent
with the cached data source. Caching requires a clear policy on when to write
changed data back to the main store and when to invalidate a cached entry because
it got changed somewhere else. These problems are totally independent of operating
systems. This multiprocessor system needs mechanisms to prevent CPU2 from
reading a stale value from memory. CPUI should use a write-through policy to
write changed data immediately back to RAM. Special hardware needs to track
cache contents across processors. If only one CPU 1s used a write-back policy
which only updates the cache immediately is feasible. Changed data are then
asynchronously written back to RAM.

Replacement Strategies

In a 4-way set associative cache a cache miss

forces you to load a new value. Which of the 4
locations do you replace?

You can use several

algorithms to chose: LRU,

FIFO etc.

When designing systems you are sometimes forced to chose a selection algorithm.
Each one has advantages and disadvantages. Do NOT chose the one with the best
performance in certain cases. Chose the one with reasonable performance IN MOST
CASES. Chose generality over specialisation. Otherwise your systems and
applications tend to break down easily if your agsumptions of how they will be used
fail. This 1s true for replacement algorithms, scheduling algorithms, sorting

algorithms etc. ,,I never thought somebody would do this....* is always a bad excuse
n systems engineering.

Resources (1)

John D. Carpinelli, Computer Systems, Organization and Architecture.
Explams digital logic, CPU and computer components using a simple CPU.
Only few assembler examples. Focus on how to build a CPU. Statemachines

etc. Very good foundation and good to read.

www.awl.com/carpmelli additional material from Carpmelli‘s book. Links
to good applets with demo cpu systems.

http://www.dcs.ed.ac.uk/home/hase/simjava/simjava-
1.2/examples/app cache/jarindex html a simple cache demonstration applet.
Nice java based toolkit too! (found via www. gridbus.org/gridsim)

Hennessy and Patterson, Computer Architecture, a quantitative approach.
The classic on CA. I leamt a lot about the connection between technical
design and financial costs from this book.

Daniel Hillis, a pattern on the stone. A short and wonderful introduction to
what computers are. No tech speak involved.

Tracy Kidder, the soul of a new machine. If you ever wanted to know what
makes system designers tick and how 1t feels to see the first prompt on a
new machine...

Resources (1)

Computer Architecture Simulators
http://swww.sosresearch.org/caale/caalesimulators.html A set of

tools for the simulation of different hypothetical or real
computer architectures

