The Linux Operating System

Lecture on

The Linux Operating System
Using the penguin for fun and profit

Walter Kriha

(Goals

 Learn the basic Linux concepts: everything 1s a file, getting
help with “man’ and “info”, users and groups.

 Learn about the core Linux components: kernel, modules,
environment, interprocess communication

* Learn about the Linux shell (bash)
* How network graphics works: learning X Windows

« Understand the differences between a Windows system and
Linux. When to use what.

* The final goal 1s to enable you to work with the Linux
certification materials.

Linux is — 1 good old Unix tradition — a rather open system. This makes it an 1deal
candidate to learn about operating systems: both source code and documentation 1s
ample and free.

Procedure

-An example session:

-Booting Linux: what 1s bootstrapping and how does it
work

- Entering Multi-user mode: runlevels
- Work with shell and XWindows
- The Linux filesystem.

- Linux administration

- Linux architecture: kernel and environment, daemons and
tools

Thig lecture assumes that vou have not been exposed to a Unix or other multi-user
system vet. We will start with the basics therefor. Later sessions will deal with
filesystem, virtual memory and processes in detail.

A short history of Linux

1991 Linus Thorvalds starts working on a 386 based operating system. It was
published on the internet and transformed into an open source project with
thousands of developers.

1994 Release 1.0 stable was published

2001 Release 2.4.2 stable published, now running on many different processors
(alpha, Sparc, Ultra, M68k, PowerPC and x86)

2003 Kernel version somewhere around 2.4.20 and going for 64 bit processors.
Almost every kind of operating system technology (firewalls, journaling file-
systems, kerberos etc.) have been implemented on Linux. A majority of web
applications runs on the LAMP (Linux, Apache, MySql, PHP) platform and
dominates the web server market.

With Linux desktop versions the operating systems tries to take market share from
Microsoft by attacking “from below”. Companies and governments are increasingly
thinking about switching to a Linux platform for price and security reasons.

Linux is NOT a revolutionary technology. But it 1s certainly a very successful one.

Linux Architecture

1. Philosophies

Kernel design

Daemons and servers
Filesystems (journaling)
Network graphic architecture

A

Device Management and loadable modules

Linux 1s not at all revolutionary in many aspects. But avoiding the latest ideas of
operating system builders also made Linux a fairly understandable and stable system.

Bootstrapping

bootstrapping 1s the process of starting a large and complicated system via a
number of very small steps. A characteristic feature of bootstrapping 1s that the
wonderful and powerful functions of a large system cannot be used to start the
system itself — they are simply not yet available because the system is not
running,

7145

Loading Linux (1)

The initial loader loads a more
powerful loader which possibly
does not use biog anymore

BIOS loads mnitial boot
loader from master
boot record on digk

Linux loaders are lilo or grub which are both found under /boot. The difference 1s
that lilo knows exactly at which block of the partition the linux kernel starts and
how big it 1s. It does NOT understand the linux filesystem and takes the
mformation about the kernel from when the kernel was installed under /boot and
lilo was re-run. Grub understands the filesystem and can locate the kernel within.

8145

Loading Linux (2): System Check and
Autoconfiguration

During system start the following functions are
performed:

-determine CPU type, RAM etc.

- stop interrupts and configure memory management
and kernel stack

- Imitialize rest of kernel (buffers, debug etc.)

- Start autoconfiguration of devices from configuration
files and via probing hardware addresses.

Probing is done via device driver routines. It means that certain memory locations
are checked for the presence of a device. The system catches errors and then
assumes that there 1s nothing mapped to this location. During regular operation
such errors would cause a kernel panic.

Loading Linux (3): Start processes

1. 1mit: the first process and the only one started by
the kernel itself. Starts other processes e.g. getty‘s
waiting for logins from terminals

2. Swapper and other system processes (yes, the
kernel depends on processes running in user mode)

Init 1s the parent of all processes. Killing it usually causes an immediate
shutdown of the whole system.

Loading Linux (4): Go to runlevel

1. System configuration scripts under /etc/rc.d/ are
executed (shell scripts)

2. Depending on the configured . runlevel* the
system either boots into single-user mode or multi-
user mode with or without networking and with or
without X Window system. (The runlevel can be
specified at kernel load-time)

Shell scripts basically initialize the whole system once the kernel itself 1s running,

Filesystem Organization

root of filesystem

currently tetmpo
! ; tunning user
bootable kernels freguenﬂj .needed devices Tibracios h adinin tools orocesses diectoties rary
TThiz utilities + configs applications, logs space
koot kin dev lib ust etc opt var proc home tmp
kerylel files AN
~. admin tools
SCree Il..,..-l.'.lli_a_.'_f_ddi sl?___._.-:smrm dc:-‘ifﬁ.i:;._ pro grams 11bre.1:gie 5 pr?grams o + confizs do cumentation o br user spate
wmlinuz - - i . . —
console | hdal FH11E6 bin lib local etc share
L — L —) _ walter ud711
/RS Py . documen AN AN
programs lthraries programs ~Tibraries B, “tation profiles, private duw's 7/ '

bin lib bin lib Fip ran doc subdirs| | |

Linux follows many Unix conventions: bin containg binaries (programs), lib libraries
(shared libs with .so extension), etc administration stuff. A multi-user system needs to
separate global and personal directories somehow. This has grown historically and 1s far
from being consistent. An important issue 1s where new programs are installed. You need
administration rights to install them into global places because this would affect other users.
If you need a name and you want to signify that the name itself 1s not important, Linux/Unix
people use ,.foo* or ,,bar* or ,,foobar. Different Unix and Linux distributions have a
different filesystem layout but the Linux Standard Process defines a core layout.

Everything 1s a file (1)

root of filesystem

!

devicn_a_s___...----"" -
dev proc
SCreetl, harddisk mou‘ée, keyﬁ"qard
L currently
console | | hda0 ms]1 kbd TutLg
L — L _— L__— — processes

Note that even non-files are made visible as files by mapping them into the filesystem. Unix
users treat devices just like files. This meang that the standard Linux file utilities (e.g. cat)
can be used on devices as well. Cat /dev/tty] reads data from a terminal. Cat /tmp/somefile
would read data from some file. The same 1s true for processes. They show up as entries
under /proc. The running Linux system can be configured by writing values into the /proc

space, e.g 1p settings. with ,,echo 1 =/proc/ip/....* File permissions are also available with
non-file entities.

Everything 1s a file (2)

ls —1 /home/walter/myfile: WX r-- - 45 myfile
owmner: read, write, group: read other: read
execute permission permission only permission only

Linux knows three basic permissions: read, write, execute. And it knows three owner types:
the real owner, her group(s), anybody else (other). With Linux/Unix vou will get errors
during command execution which are in many cases simple permission problems. Check
whether you have permission to read/write/execute the object you want to use. , Is* 1s pretty
much the same as the ,,dir** command in M3-DOS/Windows.

Everything 1s a file (3)

cat /home/walter/myfile | grep ,,bar* | wc -1

myfile
In linux we use
the word bar often. - -,
. read - -, - read - -, . read .
bar means nothing write | write | we write
just like foo. bar iz used . % cal —— Pipe e—— 2P Pipr 4 program ——» Console

to prograt prograt

Because everything is a file 1t can be used/programmed with the same functions (open,
close, read, write, 10ctl). A pipe 18 a communication channel which connects programs that
are connected through a parent/child relation. Again, it looks like a file so programs read
and write to a pipe. Even the final display (console) works like a file and can be written to.

The command from above could also be written like that;

grep ,.bar = foo;, wc -1 < foo = /dev/console

The difference is only that the results of intermediate processing will be stored in files
mstead of dynamically shipped to the next program. The following program opens the file
and reads 1t. The difference 1s execution speed. The command btw. searches (greps) for
,.bar* strings in myfile and counts the resulting lines with ,,word count (wc). In an object-
oriented sense this 1s a high degree of polymorphism.

Stdin, Stdout, Stderr, Pipe

Parent Application Child Application

Fd=0: stdin (e.g. keyboard or pipe) ><. Fd=0: stdin (e.g. keyboard or pipe)

Fdl: stdout (e.g. display or pipe)}="| Fdl: stdout (e.g. display or pipe)

Fd2: stdérr (e.g. display) Fd2: stdérr (e.g. display)
Fd3: some file a Fd3: some file a
Fd4: some file b. .. Fd4: some file b. ..

Pipes are interprocess communication channels which connect parent and child. The shell
substitutes the original stdout of the father with an outgoing end and the original stdin of the
child with the incoming end of the same pipe. If the parents now writes to “stdout™ it really
writes right to the childs inchannel — without realizing 1t! Without the need to reprogram
anything! The back channel is set-up the same way by the shell. The shell bagically

configures the routes for process communication.

Everything 1s a file (4)

fete/re.d/.. fete/passwd fete/fstab fete/iptables/config
startup user, home, filesystem firewall any more
commands shell, 1d defimtions configuration Y AIOLE oo

Linux systems are configured via configuration files. There are many of them. System
administrators need to change and adjust those files. Many tasks can be done using GUI
frontends nowadays but a real Linux admin will always want to see the resulting files.
Because configuration is file based many file/text manipulation utilities (awk, sed, ed etc.)
can be used to automate administration processes. Again: polymorphism at its best.
Introducing a database format (e.g. windows registry) forces one to create a lot of new
admin tools as well because the interface has now changed.

The evolution of flexibility: configuration

network datastore
with hierarchical

namespace: DCE
Directory, LDAP,

tlat text files with
name value pairs

adding one level of
hierarchy to allow
duplicate names for
different apps.

mode=auto
sCreen=vga
etc.

\/—

[svstetn]
device=disk
usetr=troot
[tmail]
server=mail. hdm. de
usetr=root

local database with
hierarchical
namespace:
registry

T
~

fhkey localisoftware
fhikey localimachine

fhicey localicurrent

-

J

java properties file:
1ava. screen mode=true

___/—

I :

(]

Application server with
hierarchical namespace:
JZ2EE Deployment
Descriptor (XML

ML files maintained
by distributed systems
management

J

Configuration information 1s one of the oldest ways to make applications or systems
flexible. Behavior control is extracted from code and put into files or later databases or
network stores. Things that changed: from file access (single process) to concurrent, remote
access to database. From simple non-standardized information formats to highly structured
XML hierarchies. Centralized maintenance of large numbers of applications and systems is
now possible. The consequence 1s that we lost the simple way to edit config files with any
text editor. We now have to use network enabled tools which understand the database access
languages. But we won concurrency, remoteness and the power to represent arbitrary
structures. (hardware also uses ,,morphware and configware* to configure FPGAs)

The file interface (API)

[a—

fd = creat(, filename*, mode) // exclusive access etc.

fd = open(,.filename®, mode, ..) // open file for read and/ or wrnite

status = close(fd), // no name, only handle

number = read(fd, buffer, nbytes) // reads bytes into buffer from file
number = write(fd, buffer, nbytes) // writes bytes from buffer into file
position = lseek(fd, offset, whence) // move file pointer (no real disk seek)
status = stat(,_filename*, &buf) // read file status into buf structure

status = fstat(fd, &buf) // same with file descriptor

wow A e W

status = pipe(&fd[0]) // create a pipe
status = fentl(fd, cmd,..)

[a—
o

This table (after Tanenbaum pg. 738) shows the file related system calls. Every object with
this type of interface can be treated as a regular file by countless unix utilities. Can you
explain the function of ,_fd* — the so called file descriptor?

User and Super-User

* There 18 one Unix Administrator account available in a Linux

system. It 18 called ,.root™ (like the top node in the linux
filesystem). It has ALL permissions for every system resource.

* There can be many other user accounts present. Those users can
own resources either directly (they created them) or indirectly via
group memberships

» Groups are collections of users.

* Resources have an associated access control list which knows 3
different principals: owner, group, other

Critique: An allmighty super-user 1s a danger for the whole system. If , root™ makes
configuration mistakes the security of the system i1s compromised. If a regular user
downloads a virus or trojan it will usually only affect her own resources and not those of the
other users. If users work under the ,.root™ account — even 1f they own the system — this
security 1s gone. In later lectures we will talk about other (non-ACL based) security
philosophies.

Linux OS components

Applications

GUI Programming | system
environments| | Languages | | utilities

X Windows console interface
driver | |kernel system call
module| module library
kernel

The linux kernel 18 monolithic but can be extended dynamically using loadable modules.
These modules can be drivers for hardware or filtering components for the firewall
framework netfilter etc. A standard console GUI 1s available and is used heavily in non-GUI
applications like running a linux firewall. X Windows based applications can display there
output either on the local screen or on some other X Window based station in the network.

Linux process view

pottmapper
logger

run by system

user
walter

USETS

it
sWapper

uszer foo

Dpen Office

bIOER

lernel

The kernel 18 NOT a process. It runs in the context of whatever process switched to kernel
mode via the system call interface. Other OS (micro-kernel e.g.) run processes in kernel
mode or put kernel functions into user processes. Init and swapper are the most important
processes for the OS. Init starts new processes and swapper takes care of memory
requirements. Next 1s a group of basic servers which are almost always needed. Unix servers
are often named like xxxxd with the ,,d* standing for ,,daemon* — a process running without
GUI in the background. Web Server (httpd) ftd server (ftpd) etc. are all optional. Finally
users run processes like editors (vi, emacs) or office programs.

Interprocess Communication with Sockets

Kemnel User mode

Sockets are transport endpoints defined through ,,hostname®, ,,port number* and
.protocol”. They work across machines and also locally. Typically a server process
waits on a server socket for requests from clients. A client opens a socket to the server
and sends requests. The connection is bi-directional and either stream or packet onented
(protocol tcp or udp). Sockets are very convenient IPC mechanisms. Lately the DBUS
architecture provides an IPC layer on top of sockets for the communication of desktop

applications.

23 /45

The X window system: IPC

molze

Eemel

keyboard

i,

WVideo ram

>

The graphic subsystem resides completely in USER space. Xclients talk via sockets to an
Xserver. The X server 1s the only one who controls the graphic hardware (screen,
keyboard, mouse, controller) through the device driver interfaces (/dev/xxx...). Clients
know NOTHING about graphic hardware: The Xserver will render every command either
by writing to the video memory (if only dumb hardware 1s present) or by issuing
commands to the intelligent graphic controller. Notice: The communication endpoints are
network wide: X Windows works across machines!

The X window system: API

~drawline, 10,10,100,100*

Graphic

F 3

Memory) Xserver xlib _._::
| | Xchent

...'X]l
Graphic
controller ~Keyboardevent” Oxde —

mouseevent Oxfe, 56,..

The X Windows protocol is implemented in the X Windows library (xlib). Example:
.Draw hine, 10, 10, 100, 100, g¢) would tell an X Server to draw a line between the
coordinates and use the graphical context given for that. Depending on the hardware the
XServer either has to translate the command into pixel values (e.g. Bresenham) or just turn
around and issue a (perhaps slightly different formatted) command to intelligent graphics
hardware. The Xchient receives mouse and keyboard events from the server. This make 1t
clear: the XServer controls the viewing station. The graphics application can run on a
machine WITHOUT any graphics hardware or digplay!

The X Desktops and Window Managers

Eernel
socket [*
mousefkeyboard
socket \
. fdevimouse —_| .
Graphie fdevikevboard
MEMOry
dewivga =]
Graphic
controller vd
socket

socket

X Windows does only provide mechanism, no policy, e.g. how a desktop or window
manager should look. Separating mechanism and policy allows different policies to be
implemented on the same platform. Reality has shown that users do not really
appreciate this feature... Who wants a different user interface in every car?? This was
one of the frequent cases where a clever technical 1dea did not meet the users demands.

Using Linux

1. Loggmng in: about users and administrators. Groups and permissions
Getting help: how to find help. Tools and tricks.
Where am I? about homes, the filesystem and navigation

Using the shell: why command lines still make sense

The GUI: using KDE

A i

Processes and how to handle them. Concurrency, tools (ps)

While learning some basic steps we will start talking about architectural 1ssues as well.

Finding Help

» man <command=>: uses the ,,man* program to find information on

utilities or library functions. Use man man to get information on man
itself.

« info <command=>: the gnu help system
» <command —help=: displays available command line options
* kde or gnome help 1con: displays help in a GUI

» which <~command>: tells the absolute path of a command that will
be executed if typed into at the shell command line. In other words it
tells you which command really runs if several commands with the
same name are installed in the file system. Simple takes the PATH
environment variable and searches all directories for the specified
command.

» whatis/apropos: commands which tell you about features or
utilities. Require the whatis database to be mnstalled.

» /usr/share/doc: documentation on many installed programs

Finding Files

e find . —name .. *.bak* type f —exec rm {} \; -print

File management 1s an extremely common job for linux admins and users. The
powerful .. find“ command lets you specify

a) patterns

b) file types

¢) dates

of files you are looking for.

In addition it allows you to specify a processing that should be applied to the files
found (only those that match the pattern of course). In the example above ,,rm*
will be invoked for every file found and the file will be deleted (1f you have the

proper permissions). Search starts at the current directory.

Finding Text Patterns

* orep ,,clags™ * java

In programming searching for patterns 1s a frequently performed operation. The
-grep™ command lets you specify a pattern using regular expressions and
searches for thig pattern in all the files given on the commandline (in this case
alle java files in the current directory. ,,grep —1* will work case-insensitive. Don‘t
forget that you can stack grep operations like grep ..x™ *.c | grep ,.v*. This will
first extract all lines containing x and then from this subset extract all lines
containing y as well.

Finding Programs
» echo $PATH <return=

»/usr/local/bin; /usr/bin;.;

*which s // searches the path for an executable

«/usr/bin/ls // tells you that Is would be executed from /usr/bin

If the shell needs to find a program to start it uses the PATH environment
variable. This 1s quite similiar to how MS command shell works. It 18 also quite
similiar to how Java locates loadable .class files. The mechanism 1s always the
same: An environment variable contains several absolute or relative pathnames.
The shell or java (using CLASSPATH) starts searching for the requested program
in the first path location (/usr/local/bin above) and only continues searching in the
rest of the varniable if the program 1st NOT found. The FIRST instance of the
program or class found will be used. This 1s a) a nice feature that can be used to
hide an instance of a program or class by putting a newer version of 1t in a path
location in front of the original location. This 1s b) a wonderful way to shoot
yourself in the foot if you forget that you are now relying on the order of PATH
statements. The same mechanism also works on MS Windows with dynamic link
libraries and 1s even more dangerous there. A wrong .dll library put somewhere
for a quick test™ has cost countless hours of debugging already.

Logging 1n

1. Authenticate user, compare credential with stored ones
2. Create shell with current directory at /home/userX
3. Process .profile, .bashrc etc. configuration files in users
home directory
HDD 4. Start GUI environment (optional)
= Ul 5. Check on every access to a resource that user is authorized

Lan uzers

local users

During log-in the users personal environment 1s set up. Look at the .xxx files in your
home directory.

A ,user” i1s only an operating system user 1f she has an account on the machine. The
account can be a network account or a local account. If a web server runs on a machine
and gets some requests, those requests do NOT come from OS users. The only known
user to the OS would be the web servers identity (usually .. nobody* or ,,www*).

The bash shell: an interpreter

built 1n commands:

After waiting for _ -
Is the shell prints ¢d (change directory) and

a prompt syntax: do...while .. ls command
sends results to

-
L

fork a new process
and execute the ls
command

]-SCG

e

A shell is a command interpreter. It reads from the keyboard and displays prompts at
the console. Unix commands are built in a way that allows command chaining and
also to bundle them in shell scripts: lists of commands to be executed either
sequentially or in parallel. Commands usually do NOT ask back: ,,do yvou really want
to ... or they have a ,force* parameter which suppresses warnings. Unix commands
also do not include presentation information — which makes the results possible input
to the next command. These features made many people think that Unix was only for

Hgurus® — misunderstanding that using textual representations is only a means to
achieve better automation.

33/45

Extensibility: built-in and external commands

=hell {a program with
built-in commands)

e.g,cd”
4'"---.-- Iy
- - - text files containing shell scripts text files with scripts for other
linuz executables written in any _ _ . .
- w which are a mixture of shell interpreters, e g Perl-scripts or
programming language, e.g 15 .
syntax and external or internal python, tol and so on. The text
commands. The text files start files start with a line that specifies
with a line that specifies the the interpreter needed e g
interpreter needed e g .
P & #l biniperl
#l fbinfsh

Most shell commands are external programs which do NOT belong to the shell code in any
way. The reson why shell and programs give the impression of a tightly integrated
application 1s simply that all programs are written to conform to certain specifications e.g.
with respect to how they treat input and output.

In modern speak: The operating systems and the shell form a framework with interfaces
that other programs must conform to. This allows the shell to work with any new program
that complies to those interfaces.

Shells vs. GUI menu systems

¥ Mozilla {Build ID: 2002121215}

File Edt VYew Go Bookmarks Tool ‘Window Help Debug QA

L - ® O
- o ﬁnme

| ZHome | ook —

: * about:blank

Alk+F A

Alk+Home

Ctrl+H

“EbMal P Radic #Peaple o Yeloy

=101x|

ﬂ_ﬁﬂarchl :iri v

|6 &3 \Z (3 @B | Done

-l

A menu system can also start external programs. But it cannot connect those
programs into pipelines of processes and it has no syntax to express program
statements. In other word it does not provide a turing complete language. But it 1s
extensible the same way the shell 1s: All menu entries must conform to the same
mterface, usually an action or command object pattern with a do() method which
18 called by the menu system when the entry 1s selected. Just like the shell calls
fork-exec when a command 15 given on the command line or a script.

Stdin, stdout, stderr

read input

write regular

cutput
write error
messages

When a hnux utility is started by the shell it gets three open files automatically. They
are intended to provide input and output channels for the program. They can be
anything but a file e.g. a pipe channel. The program does not care and uses them to
read mput and write results. Command line parameters can override thig behavior but
it 18 congidered good unix style to write programs in this way. The principle behind 1s
100% OO and 1s called information hiding: The program does not know or care what
those files really are.

36 /45

Redirection

read input

write regular

cutput
write error
messages

command =foo =bar 2=toobar

With the redirection characters ,,<., for input and ,,>* for output the standard channels
stdin, stderr and stdout can be redirected. This 1s done by the shell which modifies the
file-descriptor tables of parent and child process. The child program itself will NOT
notice this 1f 1t happens at program creation time by the parent process. If the
mapping 18 requested via command line parameters (,.e.g. specifying —o outputfile
bar) the program will change the input and output channels to the ones requested and
from that point on take all input from file ,.foo* and write output to file ,,bar* or
foobar* in case of errors.

37145

background processing with &

cat fusr/local/foo.txt & // read file foo.txt and write it to stdout. Do this in
// background

..shell waits for next command while , cat™ 1s still runnming and printing to the
terminal

The ampersand character tells the shell to start the requested command in the
background as a separate process and return immediately to the user for more input.
Without output redirection the command above would clutter our screen with the
content of foo.txt. A better solution would be: cat /usr/local/foo = /tmp/bar.txt &

Line Disciplines

F=1z -1 fusribinflocal <return pressed=
<

HiJohn, please send mo<backspace pressed=e _

Programs expect input in two fundamentally different ways. The shell 1s hine-oriented
and does not get the input until ,,return 1s pressed (actually newhne). An editor wants to
get every character the moment it is typed and not when return 1s pressed. The shell
operates in ,, COOKED*“ mode while the editor operates in ,, RAW* mode. Unix input
lines (. tty* for teletype) can be set in raw or cooked mode.

39/45

Frequently used commands

file system commands:

* Is -1 (lists directory
details)

* rmdir, mkdir {make and
remove directorieg)

» cat, netcat (reads
content)

» mknod {create device
entry)

* In {create links)

» tail —f (read the end
from file)

finding things:

*man xxxx (find manual
entry)

*info (info packagez)

+find (recursively search
directory tree)

*orep xxx file (look for
pattern in file)

= diff fileA fileB {show
differences between files)

Process management
* ps (process status)

* kill -HUP 3435 (stop
process)

Tools
* vi, emacs (editors)
* pr, lpr (print utils)

* X... (QUI clients for
most everything)

» netstat, ifconfig,
ping, traceroute, tcp
dump (network
utilities)

A short overview: http://www icgeb.res.in/~whotdr/0426 UNIX-guide.pdf

Administrating Linux

1. Creating new users and groups

System Configuration

Regular admin tasks and tools (cron, at etc.)
Extending the kernel: modules

Security configuration (firewall settings)

A i

Your daily job: checking the logfiles (or 1f things go wrong)

While learning some basic steps we will start talking about architectural 1ssues as well.

Programming on Linux

1. C-compiler tools

2. Editors

3. Debugging programs

4. Makefiles

5. System Programming outlook

We will go much deeper when we start learning C on Linux to do some real system
programming.

Unix environments on NT

Windows INT/20002F

Once you get used to the unix utihities you‘d like to use them on other platforms as well,
e.g. the gnu binutils and compiler to generate code for embedded control. The cygwin
environment maps unix calls to the windows32 API. Almost all unix utilities are
available. See www.cygwin.redhat.com

43/ 45

Resources (1)

The lmux documentation project. http://www.tldp.org Always check here
first for good literature on linux. Excellent guides and tutorials on all aspects
of linux.

http://Iwn.net/ lmux weekly newsletter. The source for the linux guru.

Sarwar, Koretsky, Sarwar, the linux textbook. A good collection of practical
exercises with the most important linux tools.

Klemn, Linux Sicherheit. In German. Covers most aspects of building and
running a secure Linux system (both host and network security)

A quick guide to Unix, http://www.icgeb.res. in/~whotdr/0426 UNIX-
guide.pdf Two pages with Unix commands — keep it with you at all times!
Same stuff 1s available for vi and emacs.

Resources (2)

Andrew Tanenbaum, Modemn Operatm%ijstems, 2nd edition. Case Study 1:
Unix and Linux. As always from Tanenbaum an excellent explanation o
Unix and Linux.

High-performance Linux clustering® With the advent of clustering
technology, supercomputers can now be created for a fraction of the cost of
traditional high-performance machmes. This article mtroduces the basic
concepts of high-performance computing with Linux cluster technology.

Anatomy of the Linux boot process* This article describes the most
common traits of embedded Linux distributions that people employ on x86
hardware and contrasts some of the different options frequently seen on non-
x86 embedded systems.

Lmux Kernel Device Driver Kit by Greg Kroah-Hartman
http://kernel.org/pub/linux/kernel/people/gregkh/ddk/ How to
create well behaved drivers for Linux. Driver development 1s a
sore spot for Windows as well and causes frequent instabilities.
Better architecture: micro-kernal design with user level drivers.

