Memory Systems -
Optimization and
Performance

Lecture on

Memory Systems
Organization, Performance and Design Issues

Walter Kriha

Goals

» Understand the differences between kernel and user space
with respect to performance and isolation.

* Learn how memory is administered by the OS kernel. Notice
differences and similarities to file systems.

» Memory hierarchies and performance. Multiprocessing
problems

» Understand the consequences of separate memory spaces per
process: Interprocess communication.

» Understand the price of frequent memory allocations.

Memory management is another case of general resource management by the
operating system.

Procedure

- We will learn how memory is separated and organized

- How the kernel maps virtual address spaces to physical
memory

- Take a look at shared memory

Memory Resources vs. File Resources

» volatile vs persistent

» fagt access vs slow access
= different owners

» large resource size

= concurrent access

* from bits to blocks

Looks like files and memory are not really so much different. In fact, the memory
APT can be used to handle files as well. The other way round does not make much
sense.

Address Size vs. Memory Size

I

CFUO

32hit
address 256 MB 256 MB
et Ac:c:esrsn 7512 MP additional Acc:esrsn
ardress space
Ilermory Ilemory
{physical) {physical)

A 32-bit CPU can address 4GB of RAM. Most machines do not have so much physical
memory. Notice that physical memory can be at several location in the overall addressable
space. It is even possible to have systems with more memory than addressing capabilities.
In those cases ,,bank switching® is used to allow the CPU to address different memory
regions over time

Memory Hierarchy

fast access time slow
lewel
CPUI two Regular Dymarnic Fam merorsy
cache
srall, B large, i
expensTE eapacty cheap

Access time and capacity are exactly reversed. To keep prices reasonable a
compromise between size and speed must be met. The trick is to use caching as
much as possible to keep freqeuently used data in the small but fast areas of the
memory hierarchy. Virtual memory management allows us to treat non-Ram space
like dises as memory extensions invisible to programs. This is called paging or
swapping and will be explained shortly.

0x10000 - D17

O — 0T

Physical Memory Systems

| D
Lpplication 1: all

addresses must be in —
A pplication 2

range 0x10000 — Ox1 £

Accessing anything
outside is & runtirae
error.

Kemel code and data

r

This type of system was used in early timesharing machines. The application is
completely within the physical memory and limited to its size. During code generation
the linker needs to know the starting address and size of the application memory area.
Realtime and embedded control systems frequently use the same design. Its major
advantage is its simplicity and predictability with respect to response times.
Disadvantages are the restriction of one application with a fixed size only.

Why Multiprogramming?

* Optimize CPU usage

* Optimize User experience

Most programs perform some type of Input/Output (I'O) operations which perform
factors slowers than raw CPU speed. If a machine can run only one program CPU
usage will be far below optimum (100%0) which is a waste of resources. By having
several programs concurrently in memory the hope is that there will always be at least
one that is runnable. The formula to caleulate CPU utilization is: CPU utilization = 1-
p* where p is the wait time fraction and n the number of processes. CPU usage is

only a measure for overall throughput and not how responsive a system will feel for a
user. (Tanenbaum pg. 193fT)

Multipro gramming allows interactive tasks which service users directly to run almost
concurrently (if not really given multiprocessors) to batch jobs. Interactive programs
usually have long wait-times {user think time) and therefore mix well with
background processing.

10

Swapping in Memory Systems

Application 2: all 5568 TSt be in
range 011000 - 0x1 1Y, Accessing
anything outside is a mntime error.

0x10000 - D17

Application 1: all addresses raust be in
range 010000 — 0x10fFF.

ke Accessing anything outside is a
Tintire exror.

(O — DY

l Femel code and dafa

Several processes can run concurrently as long as they fit into memory. The system
needs to find proper places for processes and deal with memory fragmentation due to
different process sizes. If a process needs to grow and there is no free memory, some
process will be ,,swapped® to disk to make room. Different strategies for process
selection exist. Swapping can be implemented with or without separate process spaces.

Multiprogramming Physical Memory Systems

A pplication 2: all addresses mmst be in
range 0x11000 - Ox1 1T, Accessing
aryrthing outside is a mntime exror.

010000 - D1£7F
Application 1: all addresses must be in
range 010000 - 0x10fff. Accessing
arything outside is a mntime exror.

Ol — 0T

Kemel code and data

r

To the size limit due to physical addresses come two other problems: relocation and
protection. The purple colored application needs to be ereated with different addresses
than the yellow one. This can happen dynamically during program load or statically at
creation time through the linker. And every additional program increases the risk that
duc to a programming error memory locations from other programs are touched. This
design is nowadays only used in small embedded control systems. The advantage lies in
cheaper hardware due to the missing memory management unit.

11

Swapping and realtime applications

A realtime application needs to be able to respond within a certain time
period. Systems that use swapping cannot guarantee this because the
application might be swapped at that time. Most systems allow to ,,pin® an
application into memory — basically making an excemption from the
overall memory management policy. Realtime systems always try to keep
all applications complete in memory.

External Fragmentation

compacted
_—

Allocation strategies with different allocation sizes suffer from external fragmentation.
One way to cope with it is to perform compaction. This is quite expensive as it requires
a lot of memory copying. We will see the same strategy used by some garbage
collectors. It is important to always re-combine adjacent free memory areas into a singl
free area.

Memory Management with linked lists

E)

e Node{H,30,15)
Hods(F,50,35)

ITIT|

Hode(H,90,19)

The linked list contains both program (P) and holes (H). Different lists eould hold
different sizes of holes so that allocation is faster.

12 14
Memory Management with bitmaps Memory Management Strategies
1-___\ T » First fit: take the first hole that is big enough
Tt » Next fit: same as first fit but starts from last location
111111111111 . . .
_“ﬁ——_____ﬁ___ Q0000000000000 » worst fit: always split a big hole into smaller chunks
TT?TTTT?TTTTTT » quick fit: separate lists for different hole sizes.
Y TT———— | unnnnmm
111111111111
111111111111
———_____| 0000000000000 Find more about these strategics at Tanenbaum pg. 200ff Notice that not only
| ooonoaooonoann allocation time is important here. When memory becomes free because a process is
removed the now free pages need to be re-combined with neighbouring free pages
which can be very hard e.g. with quick fits different lists.
A bitmap is a fast and compact way of storing metadata about a large number of
resources. If a new process needs to be created the memory manager must walk
through the bitmap to find a piece of 0%s large enough to fit the process in. This can
take a while.
13 15

Reasons for physical/virtual organization

- avoid binding program locations to fixed physical addresses
(programs could not be moved in memory)

- increase program size beyond physical memory size

- create separate address areas for programs. Programs cannot
directly access the memory area of other programs.

In times of huge physical memory sizes the last point is probably the most
important one: Avoid unintended side-effects. Program errors cannot affect other
programs. This creates a new problem: how then can programs interact and share

Virtualizing Memory (2)

CFUO

[¢] |
]
o Lipplication 2: all addresses in
3 same range as every other
g app.
. Virtual Physical
. 0
32hit o Address MMemr?;nt ddress 256 MB
address 0 ANAZe
register . Uit Y R;ndom
a | T L CCESS
] Meraory
! (plopsical)
[
s Lpplication 1: all addresses in
H sarne range as app 1.
0 page page ,,—'—’"'—F'
H tahle tahle
n
0
0
n

All addresses in programs are now considered ,virtual“. When the CPU accesses memory
the virtual memory address is on the fly translated into a physical address. The MMU is a
piece of hardware, nowadays mostly within the CPU but page tables are maintained by the

data? operating system. The relocation problem is solved because all programs contain the same
virtual addresses which are mapped to different physical addresses.
16 18
Virtualizing Memory (1) Virtualizing Memory (3)
— App. 2 trying to use illegal
CRU : CPU atfiess 5 5 |

o -+ Lipplication 2: all addresses in

s Salme raNge a8 every other

b app.

. Virtual Physical Virtual

i o) i ern
sidli:ss ; Address Mﬁ;ﬁgﬂr{f’em Address 156 ME ﬁd};:ss Address Mlt:i'nagerrnyent 256 MB
register K Unit () Random register Uit VT Random

I Liccess — Licess

] Inlermory Meraory

b {physical) (physical)

] <—

: ! '

' . Page

; Tabes fault o

{taap virtual
g to physicil addresses) :;pgg:jd
- - . If a program wants to step out ofits address range with some calculated address, the MMU
All 3f1dr°55°5 In programs are now considered ,,vu‘fual“. WhCIll the CPU accesses mermory tries to find a mapping for this address in the page tables for this process. A so called
tl?e virtual memory address is on the ﬂ)_’ tl:anslated into a physical address. T:he WU 152 page fault” is generated by the MMU and control goes back to the CPU and then to the
piece '?f hardware, nowadays _mostly w1thm the CPU but page tables are mamta_med by the operating system. If the address was potentially correet (e.g. a picee not yetloaded from
oPeratmg system. Tl.le relocation probler.n is solved b.ecause all programs contain the same the program) a new page mapping is allocated, together with a new physical frame and the
virtual addresses which are mapped to different physical addresses. instruction is repeated. Otherwise the process is killed or get an error signal.
17 19

The program-program barrier

72-bit (4 Ch) .

Reserved for Operating System
rinning in privileged mode

Every program

gets its own @

address space et et I

and cannot —— —— | [[[] [T

access other

memory

¥

The price of separate program memory areas is that user programs which want send or
receive data from other programs must do so via kernel interfaces (system calls). This is
not cheap as data need to be copied back and forth from user space to kernel and from
kernel to user space. (We will consider context switching times in our lecture on
processes and concurrency)

MMU Design

» virtual to physical mapping performed for every address
* needs hardware support (Translation lookaside buffer)

» mostly integrated with CPU

» needs integration with operating system (page tables)

We will take a look at TLB design and performance in the session on computer
organization

20 22
The kernel-user barrier Basics of Resource Management: blocks
32-bit (4.Gb) t 0.3 Mb 4Ks framues List of fiee frames
0S: dangerous {linked list or better
mstructions Lke hitmap)
blocking
interrupts, 1D Reserved for Crperating System
operations, rinning in privileged mode
mg?mnt Core map describing all
corrrands ete. 512 b Ilemory page frares
for user space I
The systern call layer L L s X l
allows specifi entries
into privileged mode .|”|‘ x .|- .|”|- T .|-
runby the kemel code. List of nsed frarees and
. their processes
. < User pro: share this area. [t
E:f:u;ﬁsmis is mfagilalr:nsy the OF. Al
progrars run in unprivile ged
wode How do you administrate a large unstructured resource like computer memory? Just like a
M magnetic disc the first step is to create chunks or blocks. Physical blocks are called frames
- - - and have all the same size, ¢.g. 4kb. Now you need a free-list where vou hold free frames
The price of separate keneliuser memory areas is that user programs which want to use and another meta-data structure to hold busy frames and who owns them. These lists can
kernel functions need to use a system call interface to ask the kernel to process the b

.. . . ecomne quite large and in those cases one uses cascaded tables with frames containing
request. The kernel can do tlns cither in the user program cont?xt (Umx.) orasa separafe frame addresses or sparse frame sets ete. All these data structures are maintained by the
process. Another price to pay is that data fror.n VO devices typlcall}f arrve m kemel. operating system. Otherwise processes could manipulate other processes memory or get
memory space and need to be COPIED over into user memory. This is costly, especially

. . L . undue numbers of frames.
for large multi-media data. Clever memory mapping interfaces can avoid those costs.
21 23

1 KB hlock

01010101
01001010
10101010
01110101
01010101
01010101
01010101

nrmsed

Internal Fragmentation

4 KB block

01010101 01010101
01001010 01001010
10101010 10101010
01110101 01110101
01010101 01010101
01010101 01010101
01010101 01010101

01010101
01001010
10101010
01110101
01010101
01010101
01010101

mrnsed

Larger block sizes are more efficient to read/write because of constant setup times for
those operations. But memory usage gets less optimal the larger the block sizes are:
On average 50% in all end blocks are wasted. This is called internal fragmentation.

Multi-level page tables for sparse maps

0 Prograra Text
Prograra Data
HOT ALLOCATEDII
A3E Program Stack | | ']

Multi-level page tables leverage the fact that most processes stay far beyond the
theoretical virtual address space limit (¢.g. 4GB). In fact, they need some memory
for text, data and stack segment at addresses far apart. Everything between is just
empty and need not be allocated at first.

24 26
Page Table Problems: size and speed Organizing blocks into page table hierarchies
complete virtual address:
A 32-bit address space creates 1 million pages at 4KB page size. This means 1
million page table entries! (How many for a 64 bit address space? Just cut off the
lowest 12 bits from a 64 bit address. The rest is your number of pages! =
On EVERY memory access those tables have to be consulted! This can be a huge))
performance hit. Global directory Fairlfmcess riddle page tahle pages
This 3-level page table organization is used by Linux (see Tanenbaum pg. 721 ff.) The
whole virtual address is split into several different indices which finally select a specific
page
25 27

A page table entry

to this page

28

Should page be cached?
Mot if' a device is mapped

Caching bit | Reference bit | Dirty bit | R/W/X bits | Presence bit | physical address (page frame)

Y

Did the process use this
page recently?
Did the process write to
this page?
Can the process write
here?
Mot mapped yet
The real physical block
address where the virtual
page is mapped.

30

Protecting Memory Segments

. —— make stack page entry NO EXECUTE to

i
Stack prevent buffer overflonr attacks.

Ivlake sure that no other process can use the

same physical frares of data segiments

L N
Tlake text segment READ CNLY to allow

Diata deraand paging from disk
Text Ilake sure that no other process can nse the same physical frames.

Tt is through the bits in the page table entries that the operating system protects a
processes pages. Buffer overflows are security attacks where attack code is planted
on the stack and executed there. Preventing execution in the stack segment is one
way to prevent those attacks (at least partially). Most paging systems lock code (text)
during execution. Self-modifying code proved to be extremely hard to program.

Page Table Games or the power of indirection

1. Protecting memory segments

2. Implement demand paging to grow
segments automatically

3. Sharing memory between processes

4. Saving useless copies through copy-on-
write

5. TFinding the best pages to remove if low
on MEMmory.

Those tricks use the fact that some bits in a page table entry are updated by
hardware (e.g. reference bit) and that instead of copying lots of memory blocks
around one can simply change block addresses in page table entries.

29

31

Grow segments automatically: demand paging

make ursed stack page entries
—— ABSENT. If a process needs more stack

it will canse a page fault and the
operating systern can dynarically map a
new stack frare into virtual meraory.

Stack

Ilake unnsed data pages ABSENT. If the
process needs raore heap space it will cause
a page fanlt and the operating systern can

grow the data segrent
Data

make text segment ABSENT by default and if' a process is started it

Text will page itself into rae mory through a sevies of page faults (no

working set concept)

Growing segments automatically after page faults is a very elegant way to increase
process resources. It has some limitations though: when does the OS know that a
page fault should result in a new page allocated or the program killed because of a
program execution bug? And starting a program through a series of expensive page
faults is not really cheap. Better solutions use the concept of a ,working set* of
pages that must be present for a process to run.

Sharing Memory Between Processes

plersical page frames in syster:
Sack Stack
Process & Process B
.,
''_'_,_,_,—‘V
Data =+ Tiata
Text Text

Simply by putting the same physical address into two different page table entries
from different processes they can share this piece of memory. This is usually
caused by both processes executing a special memory map system call. Notice
that the shared memory is in different virtual memory locations in both
processes.

Page Replacement Algorithms

‘ xxxx| Reference bit | Dirty bit | xxxx ‘

Not referenced, not modified (good to kick out)
not referenced, modified (after reset of reference bit)

referenced, not modified (busy but clean)

oW

referenced, modified

These bit combinations allow the system to implement a page frecing algorithm based
on page usage. The key to success is to always have free pages available and not to
make some free when vou need them. Most systems use a,,page daemon®
background process which scans the page usage bits. Dirty pages are scheduled to be
written to swap space and clean‘unmeodified pages just get on the free list. Text pages
are never saved (they are unchanged) because they will be paged in from disk if
needed again.

32 34
Copy-on-write The clock collection algorithm
phyrsical page frames in system:
first round: second round:
Stack Sy . o
- set referenced bit to ir;fe;;m:a;tos;ﬂl
TEID b
Process & llf."f Process B free list
i
.
Data p writeable copy -
Text 5/ Text | vl | | rl | | rl ‘ | rl |
busy page /
refe_renced
again
During process creation parent and child process share addess spaces. To prevent
data corru.ptlon th.e 05 sets ;llllefAD ONLh“f ll:lts:l: th:hpage t:zle entries. If a In a first go all referenced bits are set to zero. Between turns a busy page might be
gfl(;:i:z;lhf:;ni‘::':\;gtii‘;leac;pya?f)ethnz gla;ednf}rm;: F:o?nsthe:;c:rtlebitrlllew referenced again and stays in memory. Otherwise if on the second turn a page
: reference bit is still zero the page gets kicked out.
processes have writeable frames. Instead of copying page frames for the new page 8
process only the page table entries are copied and protected.
33 35

The two-handed clock algorithm

first round:

set referenced bit to
Zero

busy page
referenced

again

"

second round: collect | 0 | |) |

With large amounts of memory it takes one hand too long to search through all pages.

A second ,hand® is used as another pointer into memeory which will perform the
second round task of freeing all unreferenced pages. Busy pages now need to be
referenced in the time between first and second hand. The whole algorithm is usually
performed by the page daemon, a background process. Best performance is achieved
by making sure that there is always a supply of free pages (i.e. the page daemon runs
more often if more memory is needed)

Inter-Page Locality: Working Set

A I A A)

AT

The yellow pages are called the current working set of a process: those pages
which are needed in memory to avoid unnecessary page faults (thrashing). The
wortking set changes over time. To caleulate whether a page belongs to the
wortking set a virtual time value is set for every page during access. If later on
the current time — time of last access is over a certain threshold, the page is
considered to be no longer in the current working set.

36 38
Intra-Page Locality of Reference If all memory is in use: swapping
system memory: harddisk swap
pattition or file
A good compiler tries to maximize intra-page locality by grouping functions
which use each other into one page. Such references will never cause a page
fault and are especially well suited for caching. Unfortunately this is not always An operating system can swap out complete processes if the system memory is all used
possible e.g. because code from different modules must run. up. It will usually pick large processes for this and wait to swap them back in for some
time to avoid thrashing. Before paging most OS used this mechanism which is more of a
last resort nowadays. Text need not be stored because it can be reloaded from disk
easily. A system process called , swapper” selects processes for swapping.
37 9

System Memory Organization

32 bt (4) Y

1 G Ciperating Swrstern, cached and
address rapped (swrappable)

l:l Reserved for Operating System
rinning in privileged mode
0.5 Gb for OF, cached but no address
mapping (physical addresses only)
0.5 Gb for OF, not cached, no address
mapping for DA devices and mern.
mapped L0 b 4
processes & and B l:l l:l
Motice tht they are |:|
LOGICALLY
contiguons bt 9 O for User level proevares, cacked User programs share this area. It
PHYSICALLY in rom- and ey g e le is managed by the OS. A1l
contiginons mermory prograres run in unprivile ged
hlocks. ande

= L1 mm

¥

{(extended) Example of MIPS Rise architecture taken from Bacon/Harris. These
separations are created by programming the memory management unit (MMU).

Memory Related System Calls in Unix

* g=brk(addr) //change data segment size to addr - 1

* address = mmap{addr, len, prot, flags, fd, offset) // map
open file into data segment of process

» status = unmap(address, len) // remove mapped file from
process memory

There are not many such calls. The reason for this is simple: many memory related tasks
are performed automatically by the kernel, e.g. if the process needs additional stack space
or a new piece of code needs to be loaded into memory. If the running program tries to
access its code a so called page fault results and the kernel takes over control. Tt loads the
code into memory and hands control back to the process.

40 42
Per Process Memory Organization Allocating different memory sizes
32-bit (4 Gb) 05 Tk l Y 64
Special me mory =
allocators can be
dto mainta I]
Reserved for Operating System / fu'smz gr?ammea;{n . |:|
rinning in privileged mode allocations |:| =
05 Data |:|
05 Code
4
Motice that programs Program Stack l 77
are LOGICALLY
contiguons but T
PHYSICALLY 1 - ; ; i} hare this It 16
contiguous memﬁr?rnn Progratn Heap (& allocation) ismn;g?;n; tshe Q5. A]?ma 2 7]
hlocks. Prograra Data prograres run in unprivile ged
raode
Prograr Code
Guard Page for null references ¥
- - - Diagram from Tanenbaum pg. 721. The buddy algorithm avoids total fragmentation
Notice that _5t3°k and heap areas of programs can grow during runtime. Remember that of memory by merging neighbouring chunks if they become free. Allocation is by
every ffmctlon call places values on the stack. A series of calls makes the stack grow power of two only which can waste quite a bit of memory. Intemal fragmentation is
depending on how many local variables are allocated. When heap and stack meet the high.
program has reached ist maximum size. Also notice that the kernel code is part of the
program address space but runs in protected mode.
41 43

Tracing Memory Access

1. Simulation Guided Memory Analyzer SiGMA is a toolkit designed to
help programmers understand the precise memory references in
scientific programs that are causing poor use of the memory subsystem.
Detailed information such as this is useful for tuning loop kernels,
understanding the cache behavior of new algorithms, and investigating
how different parts of a program compete for and interact within the
memory subsystem.
http:/fwww.alphaworks.ibm. com/tech/sigma?Open& ca=daw-flts-
032703

2. Comumnon os tools: ps, top, sar tell about memory usage

a4

Resources (1)

e Jean Bacon, Tim Harrig, Operating Systems. Concurrent and
distributed software design,

* Andrew Tanenbaum, Modern Operating Systems, 2nd edition.

* Homework: http://research.microsoft.com/~lampson/33-
Hints/WebPage . html Butler Lampson, Hints for computer
system desgign. Read it — understand it. We will discuss it in the
next session.

45

