
Monitoring, Tracing, Debugging (Under Construction)

I was already tempted to drop this topic from my lecture on operating systems when I found Stephan Siemen's
article "Top Speed" in Linux World 10/2003. He mentions a whole range of useful tools for performance
tracking and bug finding on Linux and I decided to take his list and give some additional background on how
these things work.After being a unix kernel hacker for some year I moved into user space and started to
develop more and more user level code. I soon realized that the style of development used for kernel hacking is
quite different to the one needed for servers, frameworks and applications. Some concepts still apply, like
logging events. Others change, e.g. using garbage collectors. Some of the tools that made the biggest
impression where Pure Atria's Purify (now IBM Rational) - object code instrumentation the easy way. And the
Visual Age (now Eclipse) Debugger which made me give up on printf/println style of finding bugs. Look at the
resource section at the end for links.



Introduction

2 / 30



1. A word on monitoring, tracing, debugging.
2. Modern approaches for tracing, logging and auditing.
3. Understanding interfaces within and between programs and environments.

Remember: every problem in computer science is solved with one more level of
indirection. And interfaces are the locations where program flow can be re-directed.

4. Monitoring Levels
5. Different techniques for monitoring
6. Performance and memory tracking. How garbage collection works will be explained in

detail in our session on virtual memory. Here we will do wiht the basic concept of
memory colloring to find wrong reads/writes.

7. There are still developers out there using printf/println for DEBUGGING or LOGGING.
After these slides I don't want to see this practice EVER again in your work!. The
basics of debugging (breakpoints, stack, threads).

Goals

Introduction 3 / 30



What monitoring, logging and debugging really means

4 / 30



Overview

What monitoring, logging and debugging
really means

5 / 30



Overview (Continued)

What monitoring, logging and debugging
really means

6 / 30



The interceptor pattern underlies all these mechanisms. To get information about a certain
control flow it needs to be intercepted and written into a log somehow. Depending on
where the program flow is intercepted we know different levels of monitoring.

The basic pattern behind monitoring, logging and

What monitoring, logging and debugging
really means

7 / 30



Kernel Kernel monitoring means tracking the performance or behavior
of a whole system. It is only possible with the help of the kernel
itself, either through device driver modules or through kernel
functionality directly. Control and data are usually maintained in
userspace.

Process Level How does the process behave with respect to resource
consumption? How much time is spent in user vs. system mode?
How much memory is allocated? Garbage Collectors provide
monitoring interfaces which allow the tracking of memory usage.
Utilities like ps, top, taskmanager show process activity.

System Call Level Applications (and user level servers) finally need to call the
operating system for critical functions like I/O. This is done
through kernel traps - an ideal place to watch what a program
does without further interfering with it (or having to modify it)

Library Level (static) Many applications use additional libraries or organize their own
code into libs. If those libraries are linked statically into the
program they become a fixed part of the application. Sometimes
special versions of those libraries exist (with additional functions
for tracking problems). The applications gets rebuilt wiht such a
library and runs now in a "debugging" mode.

Monitoring Levels

What monitoring, logging and debugging
really means

8 / 30



Library Level
(dynamic, dll)

Libraries can be loaded at runtime. In this case it is easy to
replace the lib with a dummy or debug version or just intercept
the call from the application to the library function, do some
monitoring and then forward the call to the real lib.

Method or Function
call level (with or
without VM)

Most programming languages offer no easy way to intercept
program-internal calls to its own methods or functions. The
compiler needs to help here. Driven by compile time arguments
the compiler inserts extra code between function calls which
performs monitoring functions. Applications need to be
recompiled of course. It is easier if the program runs under the
control of a virtual machine because the VM usually has a
monitoring interface which allows the user to switch into special
monitoring or profiling modes. At this level people start talking
about "profiling" the applications control flow via the "call
graph" (the order of funtion or method calls). Performance
optimizations usually require this level of analysis.

Intra-function or intra-
method level

Due to the lack of interfaces this level is tracked by inserting
debugging code (println/printf) into the program. Requires code
changes of course and needs to be removed after the problems
are found. An alternative is the use of a debugger which
frequently also requires a recompilation with special debug

Monitoring Levels (Continued)

What monitoring, logging and debugging
really means

9 / 30



arguments.
Intra-expression level Only debuggers can reach this level. With virtual machines one

could possibly also single step through the bytecode.

Monitoring Levels (Continued)

What monitoring, logging and debugging
really means

10 / 30



Memory Tracking

11 / 30



A dynamically allocated piece of memory can be accessed in several illegal ways.

1. Read before write: This is a read of uninitialized data and can lead to random results.
Repeated runs of the program cause different results depending on which memory
chunk is allocated.

2. Write before or after allocation: This happens when a process writes beyond borders,
e.g. makes mistakes in array arithmetics. Or the memory has been given back to the
system (via free) and the process still writes to it.

Memory Access Errors

Memory Tracking 12 / 30



Two very powerful ones are the placement of control areas e.g. after arrays by writing a
certain unique pattern after the end of the array. If the pattern is destroyed then we know
that the process writes out of bounds. Memory coloring tracks the state of each memory
chunk as "uninitialized, initialized or freed" and logs violations in the order of access.
(Purify)

Memory tracking techniques

Memory Tracking 13 / 30



Debugging Technology

14 / 30



How do breakpoints work?

Debugging Technology 15 / 30



Control of the child process in systems with virtual

Debugging Technology 16 / 30



Remote Debugging

Debugging Technology 17 / 30



Linux Tools and Utilities for Monitoring

18 / 30



STrace Use STrace to track all activity between a user process and the kernel. No
application change necessary. Good if you want to know about the major
external functions that your program calls.

The utility probably needs to find all kernel traps and route those to itself
LTrace Same as STrace just for dynamic link libraries (shared libraries)
ldd All dynamic mechanisms have the problem that one has to know exactly

WHICH library will be loaded, WHICH class loaded. This utility does it and
there is one also for the Windows world but I forgot it, sorry. BTW: the unix
shell also has a dynamic load mechanism and that is what the WHICH utility
is for: it tells you which utility is loaded from which path. There might be
duplicates in different places and the PATH variable will decide which one
gets loaded.

System Call Tracking

Linux Tools and Utilities for Monitoring 19 / 30



GProf Use GProf to create call graph information for an application.
Take the functions which use the most processing time and start
optimizing those. The tool writes profiling output to a file. The
application needs to be compiled with special profiling options.

KProf Nicer GUI for GProf output.
Function Check Generates profiling information but needs an extra library.
GCov Also a profiler. Writes results right into source code of program.

Method or function profiling

Linux Tools and Utilities for Monitoring 20 / 30



Valgrind Processor simulator which tracks all memory accesses by a process.
Use -g -O0 to prevent optimization by the compiler.

Libmalloc Instrumented versions of malloc/free exist which can be linked into a
program as a replacement for the original versions. The debugging
versions allow fine-grained tracking of memory allocation errors

Memprof No program changes are necessary. This tool just tracks which
function needs how much memory. It also tracks unused memory areas
which have been allocated but are no longer reachable.

Monitoring Memory

Linux Tools and Utilities for Monitoring 21 / 30



System Monitoring

22 / 30



Collects profile data about all processes. Needs to load a kernel module dynamically. No
program changes or recompilations are needed. Typical design with kernel part to collect
data and postprocessing in user space.

OProfile

System Monitoring 23 / 30



Try "PS" and "TOP" to see how many resources are allocated by your process.

Resource Tracking Utilities

System Monitoring 24 / 30



Virtual Machines

25 / 30



13. Debug Tracer -------------------------------------- Categories: Product , JPDA by Olivier Dedieu
- rating: 1/5 Debug Tracer is an XML-based scripting tool for debugging, tracing, and
monitoring the JavaTM Virtual Machine (JVM). It is useful for debugging problems quickly,
almost "real-time," when a number of problems manifest themselves. The tool does not
require any modification to code and can be used to monitor not only the...
http://www.java-channel.org/display.jsp?id=c_16823

Java Profiling

Virtual Machines 26 / 30



Eclipse plug-ins for memory and call-graph profiling

Virtual Machines 27 / 30



Exercises

28 / 30



1. Check the JVM command line arguments for monitoring memory or generating a
profile.

2. Take a small Java program, create a profile and inspect it with the java profiler
3. Download an Eclipse profiling plug-in (sourceforge.com or eclipse.org) and generate a

detailed call-graph and memory usage diagram. Which method takes most of the
time? Which one uses the most memory?

4. Get your favorite Java debugger and try setting breakpoints. Can you find the calling
hierarchy (stack)? How many threads do you have? Monitor the value of a variable in
a for or while loop. Dump the values of local class members of a class.

5. Dump the bytecode of your java program using jprof.
6. Use a decompiler (DJ) to recreate the java code from your program.

Java Based

Exercises 29 / 30



1.

Unix/Linux Process related Exercises

Exercises 30 / 30


