Virtual Machines

Lecture on

Virtual Machines

Flexibility vs. Performance

Walter Kriha

Overview

» Virtual Machine Technology (History, Concepts)
» Examples

» Simple PC Simulator

* VMWare

* (Java) VM
» Selected Problems

* Understand Garbage Collection in the Java Virtual
Machine

» Sandbox Model of security and class loading

* Bytecode Manipulation and Optimization

Goals

» Understand what virtualization means
sUnderstand how what a virtual machine is and how it works
» Understand Garbage Collection in the Java Virtual Machine

* Understand the sandbox model of security and how it can be
applied in embedded control

» Understand concepts of isolation and parallel processing
using several VMs

The concept of virtual machines is important in both Java and .Net environments.
Tust like years ago kernel functions where moved to user processes (like XWindows
servers) nowadays kernel functions are moved into virtual machines which create a
runtime environment for new languages.

Examples of Virtualization

* A network filesystem mounted at a local machine virtualizes
disk storage

* The proc filesystem virtualizes kernel parameters

* Distributed middleware virtualizes the concept of object
access

History: Isolation from Change

A pplication

<:: Crperating Systern

Wirtual Iachine ==

Hardwrare

In a way every interface can be used to virtualize a certain functionality. Concrete
implementations are hidden behind the interface. A VM typically virtualizes a
complete physical processing environment.

An application written directly to the hardware gives the best performance at the
cost of high software efforts for programming low-level tasks like I/O handling ete.
And another problem appeared: hardware could no longer be changed/evolved as
this would break applications. To decrease the programming effort operating
systems where introduced as mediators between applications and hardware. If
hardware changed, the operating system had to be adjusted. Soon IBM discovered
the value of another interface in front of the hardware: the virtual machine layer.
Perhaps invented from sheer necessity to run older software on new hardware the
VM design pattern soon became standard in IBM even for new machines.

Levels of Virtualization

Interpreting
LISF code ina

Pro; ming Lan &
i L sralltalk systerm

Ermlating the
systemn call
interface of O3
AonCOSB

Operating System

Hiding different
BIOS hardware behind a
BIOS interface

a randerm Intel U
eraulating old 8086 CPUs ora
CFrU programmahle CPTT
ermlating a completely
different CFTT

Typically the lower the level of virtualization the better (scamless) can the
virtualization perform. It is usually not enough to emulate e.g. the MS-DOS
interface if you want to run DOS programs on a different machine. Because DOS
programs frequently program against the BIOS or even the hardware directly. PC
Simulators usually have to re-build the hardware of a PC

The concept of a virtual machine

application application ﬁ}oadn;tected
Guest OF ! ‘ COperating System & ‘ ‘ Operating Systern B ‘
‘ Wirtual Machine ‘ ‘ Wirtual Iachine ‘
Protected Ilode VI Monitor
Hardwrare

A virtual machine is a runtime environment for applications written against ist
interfaces. A virtual machine can use an operating system or can be ported directly
onto a specific hardware. If a VM has also a concept of users and processes it could
as well be called an operating system.

Interpreting VMs

applieation Corpiled for

-—
CP1 Type &
‘ Operating Systern & /

‘ Wirtual Wachine ‘
\ Compiled for

CPU Type B
VI Monitor /

Hardwrare

Here the VM needs to act as an INTERPRETER which reads the foreign CPU
instructions and converts the commands to CPU type B instructions. This type of
VM is extremely flexible but is usually not very fast due to the interpretation.

10

Examples of VMs

» Simple PC Simulator (an interpreting VM)

» A historical mistake: 8086 mode in 386 CPU

* VMWare (hosted, direct emulating VM)

* XEN (with ported guest OS)

* (Java) VM (General processor for intermediate language)
* Terra (Trusted Virtual Machine Monitor)

The first example was an extension to a public-domain PC simulation engine which
was made to run on National-Semiconductor cpu‘s, using X-Windows for a UL

Direct Emulation VMs

application

‘\ naing
/ mpratected
‘ Operating System & ‘ /

& privileged instruction
‘ causes a trap (vinlation)
. which changes processing
ggﬁp_[l?;gef%r mode to protected. This
wray the VIVIIVI can
Lcatch™ systern
VI Monitor instructions.

Wirtual hachine

Hardwrare

Application and guest OS use the same CPU instruction set as the hosting system.
Therefore regular (non-privileged) instructions ean run at full CPU speed. Special
(privileged) instructions which would change the state of the overall system or
hinder other VMs are trapped and emulated by the VMM. A CPU is well suited for
direct emulation if no speeial instruction can be called from unprivileged code
without a trap happening.

11

Building a Simple PC-Simulator

Ingredients:

+ Simple 8086 Interpreter { a VM written in C, open source, incomplete and
buggy)

+ PC Architecture handbook (IBM) with all hardware and addresses
+ List of BIOS calls

+ List of MS-DOS system call interfaces (interrupts)

+ A BIOS and DOS copied from an IBM PC

+ SINIX on MX500 Multiprocessor

«Leisure Suit Larry (for testing purposes of course)

« Intel 8086/186/286 CPU instruetion manual

The goal was to get MS-DOS based programs to run on a National-Semiconductor
based multiprocessor

What Larry Needs...

al

8086 Interpreter. Takes
machine instructions
from program code and
simulates the Intel CPU
on a NatSemi Box.

Library of funections
simulating MS3-DOS
system calls which get
called from the interpreter
if it detects a system call
within the program.

read program at current [P position:
switch {machinelnstruction)
case (0x 1234) /7 compare

get operands and caleulate result.
update flags. Recalenlate IP position

case (0x 4367 ff int 13 ME-DOS call
call operands and call DOS lbrary

witeChar(char) [systera call # 10
i

HDraw(Character{char)
'

Sounds quite simple but is horribly wrong: A system is more than just a CPU. In/Out
instructions for hardware access where missing in the interpreter. Actually —
HARDWARE was missing too!! And MS-DOS turned out to have a horrible number of
system calls which one would not like to re-implement. But worse: MS-DOS turned out to
be the wrong VM emulation layer at all because programs used other (deeper) interfaces at
the same time for performance reasons (e.g. BIOS or direct hardware access)

zet operands and call DOS library
case (7297 Out instruction
serial / get operands and write to virtual
10 hardware state-machine

The self-made Virtual PC

Sinix Host Syster software state software array
machines
tim read program at current IF position:
- er
fdevitime | +—— . switch {machineInstroction) : XWindows
chip video | :
case (0x 1234) J7 compare I Dlsplay
get operands and caleulate result. raimn commands

IustivralteridosFilel mage update flags. Recalenlate IF position

disk

contr
oller \

case (0x 4567) [int 13 MS-DOS call

The VM booted a real MS-DOS version from a DOS Filesystemn Image within a regular
Sinix file. Some hardware was re-built as software state machines but some BIOS interfaces
where just simulated directly in software. Video is always a problem because of the huge
armount of data involved. The array simulating video array was split in different zones with
dirty bit logic and block updates where used in XWindows to update the screen. CGA type
computer games and some DOS based maintenance tools where able to run on this virtual
PC. Even some Intel 186 and 286 instructions where implemented but no protected mode

stuff. T could memorize Intel machine instructions after that for a while...

12 14
. ce .
.. 1s ,real® hardware Simulated 8086 Mode on 386 CPU
nterru
pt read prograr at current IP posttion:
‘___‘_‘—\—_
contr. BIOS :Ode switeh (machireInstraction)
LARRY code case (0x 1234) /Y corpare Mishehaving — - | ProtectedMode old 80%6 Mishehaving
timer get operands and caloulate result. TEW PIograra Program progeam old program
chip "'Lmo (640k) with update flags. Recalenlate IP position |
. case (0x 4567) 1/ int 13 MS-DOS call + +
- Operating | 2086 exul
i MS-DDS image get operands and call DOS library Igidrfr”:g‘ Sup;;“n ‘
§ VideoRam case (739) Ot instruction I 3
conir get operands and write to virtual FROGEAN
oller hardwane state-roachine SAFELY 296 cpry | 086 xl
TERMINATED mode
cerial T/O area (controllers) ¢
/O
Computer Peripherals etc. gg‘?;;?
A most other DOS programs Larry used not one but three different architectural layers to - - - -
get/use system resources. It used DOS system ecalls, called BIOS functions directly and on The so called DOS-boxes ¢.g. on Unix or OS/2 machines used this emulation mode but
top of this knew hardware addresses in the I/O area and used them to manipulate ICs experienced a loss of system stability. Security was basically non-existent for programs
directly. This made it clear that merely re-writing MS5-DOS in a library would not suffice. running.in this spec.ial mode. But 05/2 made ano.ther mistake: never offer a compatibility
Nor would a re-write of the BIOS do. I decided to use existing BIOS/DOS code and just mode with some Microsoft feature: Customers will never port their software to your API
simulate the hardware by turning the 8086 emulator into a virtual PC. then. The same is true of DCOM-CORBA bridges from omg. Apple knows this better!
13 15

VMWare: hosted, direct emulation VM

Lessions learned:
*Dont re-invent the wheel. Use as much existing software as possible

*Run as much code as possible natively on a CPU. Trap privileged instructions.
This will ensure good performance

+*Define a standard hardware environment which you have to simulate.

+Use an existing host operating system for convenience

VMWare provides high-speed virtual machines for the PC platforms. It runs on Linux and
Windows operating systems. A key feature is the direct emulation mode where code is not
nterpreted but runs natively on a CPU.

Virtualizing /O in VMWare

Virtual Virtual Virtual
Machine Machine Machine
Virtual[NIC VMM Virtual|NIC VMM Virtual|NIC VMM
| | —
(Host-Only) Host OS, (Bridged) £
VMDriver & w
VMApp Virtual a
VMNet Driver VMNet Driver L Bridge 2
1 o
Hardware =
Physical NIC

From: Ping-Chuan Lai, Virtual machine — memory and I/O management. Notice that a
vmware VI can have its own MAC addresss e.g. Also notice that not every I'O request
needs to go through the host O8 and driver. If it only changes the state of the virtual NIC
no world switch is needed.

16 18
VMWare virtual machine architecture Xen 2.0 Architecture
appliration Domain 0 Domain 1 Domain2 Domain 3
: Unmodified User- User User User
‘ Cuest Cperstng Systens ‘ Enzgemmd Level Application Software Software Software
Software
Host Applications ‘ VI Lpp \ ‘ Virtual Ivlackine ‘
' Ported ‘Guest GuestOS ~ GuestOS GuestOS
Operating Systems (Linux 24.26) (FreeBSD) (Linux 26.7)
Host OS used for i “ VI - — l g o
Host Cperating Ssratem driver r Whi Ionitor Dg“vlb.ré\‘r F‘.&;’:)Ervn Dev:ggg:wrs ijﬂoe{"gaw(s
&l
. X
v Xen Wypervisor | iirioce inieriate channels x86CPU phymom | E
] Hardware u l ‘ ‘
Hardware Hardware
All /O instructions are intercepted by the VMM and re-directed to a VM applications.
From there regular system calls are used against the host OS to fulfill the requests. -
Switching from VM World to host world is called a ,,world switch® and is rather Fro.m: Tan Pratt et'fﬂ (see rest?urces). I\.To.te that XEN needs ported guest operating systems
expensive. For every request both drivers (guest and host O8) are processed and several unlike vmware _WhICh runs with the ::mgm.als. The X_EN approach can deliver better
context switches happen. For a description see Sugerman et.al in resources. performance with the same level of isolation as provided by vmware.
17 19

The Java Virtual Machine

» Abstract virtual machines specification (class format,
mstructions, stack machine etc.)

* Implementation issues (language, performance)

» Runtime (instance) issues (user, isolation)

Bill Venners , Inside the Java Virtual Machine® is an excellent introduction (see
resources). Please note that the ,,Java® VM is not really specific to the Java
language and can exccute other high-level languages which are compiled to the
intermediate bytecode as well. A Java principle therefore is to consider the Java
environment the main API. As a consequence e.g. security decisions are

implemented in the Java environment {SecurityManager, AccessController) and not
hidden in the VM.

Java Source to Execution Model

1.loading (find binary representation)
2 linking
Verification (legal operands, type safety)

Preparation (init standard defaults)
Resolution (symbolic names to indices)
3. Initialization (class members

static values)

From the Java VMspec Version 2. For performance and resource reasons the JZ2ME
versions of the VM perform pre-verification of bytecodes. This caused already
some security leaks on embedded platforms.

20 22
Abstraction in Computing Class File Format
N magi c_numhber 4
«Even hardware manufacturers have taken to abstraction, the Transmeta ersion numbers
line of CPUs are sold as x86 CPUs but in reality they are noi. They provide DD ed,_7oel]_Gom 2
an abstraction in software which hides the inner details of the CPU which is
not only not x86 but a completely different architecture. This is not unique to
Transmeta or even x86, the internal architecture of most modern CPUs is
very different from their programming model.” (Nicholas Blachford) super_class 2
interfaces_count 2
interfaces n
Compare this view to some statements from Object-Oriented computing: The (28 il ¢, o 2
implementation object model is a one-to-one clone of the business object model (or fields 2
analysis model). This would tic implementations structurally to specific form of
business problems and make them extremely inflexible. Changes in business models
would require changes in implementations. So what? This is happening all the time. Py g "
‘What if we would consider a framework for business applications as a virtual
machincf. Business N bject mod?ls need to b.e compiled agaiHSt the a.bstra.c t ix.ltef"face The java class file format is an extremely compact way to represent the information
of the virtual machine and.the implementation o_f all business fun.ctlonahty inside from a java source file. The compiler has added the java bytecodes for the methods
the VM would be free. Tl.ns of course could agam run on a.VM like the Java or and recorded all the relations between this class and superclass, interfaces ete. Note
NET VMs. How does this compare to Model-driven Architecture? that this format is NOT java specific. It could represent other languages as well (see
Groovy). Diagram taken from Kutschke et.al, (see resources)
21 23

The Classloader Mechanism

+Load java .class files (from anywhere), load resources and native code .dll’s
«Isolate different classes with same name by using different class loaders
«Allows reloding of classes by reloading their classloader

+*Rules: ask parent class loader first. Do not search by calling lower level class
loaders.

From Bill Martin, Websphere... (sec resources). Remember that a typical Java VM
runs within ONE address space and does not provide OS type isolation based on
virtual memory. The order and mechanism of class loading is therefore used in Java
to achieve code isolation. Based on where java code come (from which class loader)
different privileges can be assigned (see Java 2 Security, granting permissions)

Java Classloader Hierarchy

T W A W B B
Primordial Clase Loader |8
s .
T, Gr——
? Java lang ClassLosder E
R R I T
é.» M '{k\)\\\'\ B s
% Java sscuricy SacureClassloader |
e o

8 seiCoostcuder

R

From Edward Felten, Securing Java

24 26
Application Server Class Loaders Classloader code example
‘ Bootstrap CL (java.*, jre/, —Xbootclasspath) Top level ‘ public class SimpleClassLoader extends ClassLoader {
System level public synchronized Class loadClass(String name, boolean resolve) {
‘ Extensions CL (jreflib/ext, property java.ext.dirs) ‘ Class ¢ = findLoadedClass(name);
- if (e != null) return ¢;
‘ CLASSPATH CL (everything from classpath var) ‘ try { ¢ = findSystemClass(name);
Runtime ‘ AppServer CL (no application code) ‘ if (¢ 1= null) retun &
} catch (ClassNotFoundException ¢) {}
Firewall/Security Protection CL (against normal CLs loading system try { RandomaccessFile file = new RandomAccessFile("test/™ +
classes) name + ".class", "r");
byte data[] = new byte[(int)file.len H
Application CL (one for all or one for each. Search ﬁi: rea dF[lllly(data)'Yt L) th0)]
Application o st panchinsylas)) ¢ = defineClass(name, data, 0, data.length);
level ‘ Web Module CL (one for all or one for each) ‘ } cateh (IOException ¢) {}
if (resolve) resolveClassic);
‘ Shared Library CL (for common libs) ‘ return ¢;
3
From Bill Martin, Websphere... (see resources). Early application servers where suffering
from .differ.ent apps bringi.ng different Ver%ion.s of utility librffries et(.:. with them and. caused From Kutschke et.al., Order of resolving requests is extremely important. user written
conflicts with previously installed or application server special versions. Java Security classloaders are today a major source of security problems in Java applications.
knows also a security classloader which is active when Java 2 Security is enabled.
25 27

VM Runtime Instruction Set

opcode | byte |short | imt | lomg float double | char | referemce

/'7 Tipush bipush |sipush
I P Teonst tconst iconst fronst deonst laconst
class Tload iload loed |fload dlsad laload
C;ﬂssﬁ[es - loader Tetore istore istore fotore dstore astore
Tine iine
Taload baload |saload [taload laicad |faload daload \caload |laaload

Tastore bastore \sastore [jastore lastare [fastore dastore \castore (zastors

o : Tadd tadd ladd fadd dadd
method o Java pe method Touk isub isub |fab \dsub
area stacks registers e : Tinual - bl el ool

Tdiv idkv idiv [y ddiv
time data areas : Tram frem irem frem drem
A Theg ineg ineg |eg dieg
| Tih! ichi ish!
S S native Tehr ishr Ik
execution J | native method _ method Tushs hushe hushs

p]]ginc .fme:face libraries Tand iand land

Tar ior oy
Txor ixor ixor

Bill Venners , Inside the Java Virtual Machine® is an excellent introduction (see The TVM opcodes are only 1 byte long and encode in most cases the type of the operand as

resources). well (iload, lload, fload, dload ¢.g.)
30
Abstract Machine VM Bytecode Example
class stringtest | Line mumbers for method stringtest()
FC FC static public woid main(3tring [] line 1: 0O
Tulethod Thread Thread args) { Method woid main(jawva.lang. String[])
hrea ourrent current Heap (gathage String testl = "AnExample™: 0 ldc #2 <3tring "AnExanple™>
Ilethod Tylethod collected) String testZ - "AnExample”;
’ 2 astore_l
if [restl == testz}{ 3 ldc #2 <String "AnExample™
Thread Thread System. out. println(“Sach ich doch™);
Stack Stack 5 astore_Z
Constant H 6 aload 1
Pool }
7 aload 2
native native } § if_acmpne 19
Ilethod Tlethod . . X . .
Stack Stack 11 getstatic #3 <Field jawva.io.PrintStream out>
14 ldc #4 <3tring "3ach ich doch™
16 inwokevirtual #5 <Method woid
println(jawa. lang.3tring) >
19 return
Frame Frame
Frame Frame R Line mumbers for method void
Frar Frarug generated with javap -1 —¢ from nain{java.lang, String[1)
stringtest. class. Notive the index line 5: 0
into the constant pool for strings line 6: 3
Bill Venners ,Inside the Java Virtual Machine® is an excellent introduction (see resources). line 8: 6
Notice the different spaces for every thread. And every method call is represented by a line 10: 11
special frame object which encapsulates the execution engine (see later). Class files contain line 12: 18
symbolic values which are later converted and stored in the respective pool/area.

31

Loadtime Bytecode Verification

Please note that the type safety of a Java program
is checked by the VM during class loading, This is
fundamentally different to the compile time
concept of e.g. ¢t++ protection tokens (private,
protected ete.)

Garbage Collection

A garbage collector claims all memory that can no longer be
reached from within the program. In most cases the program
stack(s) are walked and all memory that is referenced by
something 1s marked as still needed. After marking memory
the unmarked rest becomes garbage.

For a discussion of garbage collection techniques see Paul Wilsons paper
(resources).

35

32 34
Frame (execution engine) Empirical Data on Memory Use
Fosition, 1ecalvaridbks: ﬁtﬁég\;ﬁm 1. Most memory which is allocated has a very short lifetime. E.g. strings
in Java
o 3 . iload_0 .
1 4] 2. Some memory has very long lifetimes, e.g. cached reference data
- operand stack iload 1 .
2 wd (constants for languages and countries ete.)
T = | istors_2 3. Different ways of separating used from unused memory exist and they
4 / work differently for newly allocated and old memory.
4. Different applications have different garbage collection needs. Some
0 3 applications don‘t allow large gaps in processing. Other applications
1 4 need large throughput and cannot wait for one thread collection
2 7 / garbage.
5. Garbage collection can be optimized if the application is traced for
speed and object creations
Operands are pushed onto the operand stack — the only place where caleulation can happen.
In this case two variables where copied from the local variable array (0, 1) to the operand
stack. Tadd pops both, performs the calculation and puts the result back onto the stack. Without empirical data on an application it is impossible to optimize garbage
From there, istore_2 takes the current value and moves it into position 3 of local variables. collection. Most VM"s provide many options to create performance data.
33

36

Why different Garbage Collectors?

« Application Types: no stops in multimedia apps. Huge
memory in transactional enterprise apps. No GC problems
in GUI apps because of wait-times.

* Data types: short lived strings vs. long lived reference data.

» Machine types: small machines running one CPU and little
ram: GC times are short but frequent. Large machines with
many CPUs and large ram: GC times are long but possibly
infrequent causing problems for near-realtime apps.

‘ Different Garbage Collectors will work differently in all these cases.

38

»Stop the world* vs. ,,Concurrent GC*

All application threads stopped.
Bad performance for near-realtime
applications

Everything that cannot stop is
treated badly by this algorithm
Large memories increase the
difficulties because it makes the
runtime for GC even longer

The GC runs concurrently with
application threads. Those
threads are stopped only for
extremely short mark or re-
mark phases.

The applications keeps
responsiveness even for short
intervals.

High demand for memory can
force the GC to fall back to a
regular mark-and-sweep.

Multimedia applications ¢an take maximum profit from using a concurrent GC.

37

The traditional mark and sweep algorithm

Step one: Step two: Step three:
Stop all concurrently Start walking all Compact the residual
nimning threads stacks and rark all heap memory.

referenced ohjects Tnused mermory is
freed and can now be

re-used

The core characteristics of a mark and sweep algorithm are:

-either user threads OR the GC run. This basically stops the application for the time the
GC is running.

-Compacting memory is expensive

We will look at the characteristics in detail and see how other GC algorithms handle
them.

39

Amdahls law and GC serialization

Single-threaded vs. parallel GC

* Only one thread per VM is * Several threads perform
responsible for garbage garbage collection concurrently.
collection. s+ The application threads are

* Large Memory causes large stopped while the GC threads
runtimes for the GC are running,.

* Multiple CPUs are only used » Application stop-time is short
for application threads (which because more GC threads mean
make garbage). shorter wait-times.

» Collection cannot profit from » Large memories can be checked
multiple CPUs by parallel GC threads.

Large Servers {more than 8 CPUs) with lots of memory {more than 4 GB) will create
huge amounts of garbage. They need parallel collection to keep up with the
generation of garbage.

New Generation vs. Old Generation

A generational GC first allocates newly requested memory in the ,,new generation™ area.
After a while if this memory block is still in use it is copied over to the ,,0ld generation™
and the new generation region is released. Differentiating both memory regions allows
the Garbage Collector to check the new generation frequently (new memory is often only
short-lived) and the old generation (which often contains constent reference data) rarely.

40 42
Copying vs. compacting GC
PyHS pactins - Complete vs. Incremental GC
Fhase one: valid memory is fnl;raskzc?m. valid meranry is
rearked —
— [
I:l] ATl e mory s checked for Wlemory is divided in _ {rains™
Irveness which are checked in different
G runs.
— — [
—| - - J_—— ‘H"\-\.

Phase two: valid . iedd Phase two: fiee meranry is joined with free - :l — :I \

into ; n‘::f.mm;errgogja]sﬁ?ep;eld ::egiron adjacent reraory to form larger free blocks first rn

ic declared free. Mext fitae the twa mgions {conparted). The valid mermory is not last run

are reversed. moved. ’—‘ ’—,—‘:I [j

The advantage of an incremental GC is simply that the stop-times for applications are
Both techniques have different advantages. Copying only the memory still in use over to a shorter, espeeially with large memories. But incremental collection can lead to not
new region pays off if most of the memory has become invalid and only small numbers need enough memory being freed and the GC must fall back to regular complete mark and
to be copied. The is typically true for the ,new generation” of memory allocated. Older blocks sweep techniques.
can become invalid as well but this does not happen so frequently. This means that instead of
copying everyting to a new region only the memory no longer in use is recombined into larger
frec blocks. Moving blocks in memory also requires one indirection: a client cannot have a
pointer (address) directly to memory because this would be wrong after moving the memory.
41 43

a4

How to diagnose memory allocation
problems

» set GC to verbose. This generated lots of statistics about
allocated objects, GC runtimes and effectivity.

e Ifthe GC part in your application is beyond 15% you have
a problem with too many objects being created.

* Run a memory leak checker like purify, optimizeit or
jprobe to check your allocations.

Too many objects allocated is the number one performance problem for java
applications. The other bummer is underestimating network lateney in distributed
applications.

46

Avoiding Premature Optimization

method counter tracks invocations

. &
void foo () {
for (i=0; i< someValue; i++)f————— by matching
doSomething. .. wloop patt_ems“
the VM tries to
} detect loops to
1 keep a counter on

the loop count.

A JIT compiler can get help from the VM to decide when to compile bytecodes. If a
method is not used frequently it is generally not worth compiling it into a faster
version! Therefore the VM can keep counters on methods and loops. From
T.Sugerman ct.al. Pg 177-179.

45

Just-In-Time Compilation

[

LOOP VERSIONING |

| FLOW ANALYSIS |

l

| METHOD INLINING |

l !

| EXCEPTION CHECK ELIMINATION | | NATIVE CODE GENEBATION |

l

| COMMON SUBEXPRESSION ELIMINATION |

I

STACK ANALYS|S |

| CODE SCHEDULING |

A TIT compiler converts bytecode ,,on the fly* to native machine code. This can
improve execution performance a lot but places a burden on the startup time due to
the necessary compilation step. (From T.Sugerman et.al.)

47

Resources (1)

A list of optional switches for the HotSpot VM:
http://java.sun.com/fdocs/hotspot/VMOptions.html

An excellent article on 1.4.1 garbage collection: "Improving Java
Application Performance and Scalability by Reducing Garbage
Collection Times and Sizing Memory Using JDK 1.4.1," Nagendra
Nagarajayya and J. Steven Mayer (Sun Microsystems, November
2002):

http: //wireless.java.sun.com/midp/farticles/garbagecollection2/
J25E 1.4.1 boosts garbage collection. Three new algorithms target
near real-time applications

Java HotSpot Performance FAQ
java.sun.com/fdocs/hotspot/PerformanceFAQ.html

Paul R. Wilson, "Uniprocessor Garbage Collection Techniques",
http: /fwww.cs.utexas.edufusersfoops/papers.html. The best
resource on general GC questions.

48

Resources (2)

J.Sugerman, Ganesh Venkitachalam, Beng-Hong Lim, Vmware Inc.
Virtualizing IfO Devices on VMWare Workstations Hosted Virtual
Machine Monitor {(Usenix 2001 Proceedings). Excellent introduction
to VMwares concept of direct emulation and hosted VMs.

http: //www.usenix.org/publications/library/proceedings/usenix01/s
ugermanj/sugerman_html/

Hideku Eiraku, Yasushi Shinjo, A lightweight virtual machine for
running user-level operating systems.

Benjamin Atkin, Emin Giin Sirer, PortOS: An Educational Operating
System for the POST-PC Environment

Ahmad-Reza Sadeghi, Christian Stiible et.al., European Multilateral
Secure Computing Base. On PERSEUS and other approaches to
trusted computing. Good links.

Dinda Winter, Resource Virtualization Reading List,

http:/fwww.cs.northwestern.edu/~pdinda/virt-w04/reading_list. pdf
excellent links on all kinds of VM research.

Resources (4)

« Ian Pratt et.al, XEN ant the art of virtualization. Describes XEN 2.0
architecture.
http: /fwww.cl.cam.ac.uk/Research/SRG/netos/papers/2004-xen-
ols.pdf

+ Ken Fraser et.al, Safe hardware access with the new XEN virtual
machine monitor. Describes the new I/0 interface architecture
http: /fwww.cl.cam.ac.uk/Research/SRG/netos/papers/2004-oasis-
ngio.pdf

¢ The XEN portal at univ. of Camebridge:
http: /fwww.cl.cam.ac.uk/Research/SRG/netos/xen/

50

49

Resources (3)

T.Suganuma et.al., Overview of the IBM Java Just-in-Time Compiler. IBM
Systemns Journal Yol 39, Mo 1. Good explanation of the inner workings of a
JIT compiler. Includes incremental compilation technology.

Eric Kohlbrenner et.al. Demonstration of an IBM VM concept.

http:/fcne. gmu. edu/itcore/virtualmachine/demo. htm This is an applet
demonstrating the memory closure provided by a VM

Bytecode manipulation, by Ron Kutschke, Daniel Haag, Mirko Bley and
Markus Block, & very good introduction with source examples on how to
maniuplate java class files. Explains class file format, VM structure etc.
http:/fwww kriha, de/krihaorg/dload/uni/generativecomputing/generation/B
ytecode.zip

Brian K. Martin, Understanding Websphere .5 Classloaders. Describes how
isolation and sharing can be implemented by chosing clever class-loading
strategies. Explains class loader chain used. (developerworks)

Using the ASM Toolkit for Bytecode Manipulation by Eugene Kuleshoy
http:/fvwww . onjava,. com/pub/alonjava/2005/01 /26/classloading. html
Explains the intricacies of Java class loading.

Micholas Blachford on CELL design.

http: S, blachford, info/computer/Cells/Cell2, html

