Document Construction

Lecture on

Modelling Documents
,-a how-to of modelling xml documents*

Walter Kriha

Goals

* Learn how to create a model for a (future) document type

* Understand that modelling is hard work and that the XML stuff'is only a
tool

* Learn to distinguish domain elements trom technical elements in your
model

* Learn to ask questions about cardinality and structure of your model

* Learn how to start simple and get more complex and powerful later on
(refinement)

Most beginners focus on XML syntax and tools instead of a model of their documents.
This lession tries to set things straight: We will use an example document type to
create a model. We will use this model later on to ereate XML instances and then
apply a step of generalization to create an XSD and DTD description for it. But this
session will NOT use a lot of XML terms.

Possible Document Examples

+ Recipies

+ Technical Handbook
+ A letter

+ Catalogs

+ A wanted” poster

A good example is one where vou have knowledge about the contents of such
documents and which are at the same time not too big or too complex to start with. The
technical handbook is not a very good example with respect to this because it is too big.
And: there is already a pretty perfect model for technical handbooks: it is called
~docbook® and is tailored for this purpose. The other examples are OK.

Step one: Brainstorming
What makes a catalog?

+ Article number « Article data (technical data)

+ Description +« Producer

+ Price + Page numbers

+ Picture(s) + Table of content
* Index

* Legal

+ Order Forms

In a first step we collect things that appear in a catalog. We just write down what we
know in list form without getting into the details yet.

Step three: build trees (1)

Article Nurdber

| Producer | | Legal | | Diescription |

We can form a flat tree with , article number* as the root element. We do the same for
our other catalog elements on the next slide.

Step two: group things

e

Tahle of content
e

Producer

Legal

It looks like our things can be grouped in 2 main categories: one has to do with the
articles themselves, like a row in a database with article number as the primary key.
The other one has things which belong to the catalog as well. We don®t have a top
element yet for the right side. We can chose ,,catalog™. The left side groups around
narticle number or ,article™ quite naturally.

Step three: build trees (2)

Order Form |

[maex] [arises | [Table of comtent || Page Mubers

While we build the catalog tree we notice a couple of things: first, we want our
articles show up in the catalog but we do not have an ,article® thing yet. All we have
is ,,article number*. We canintroduce ,,article™ easily. Second: Some of our things
look a bit dubious: Shouldn‘t page numbers and table of content be generated
automatically? How do we create anindex automatically? What information do we
need to do this? We will come back to those problems later on.

Step four: combine trees (1)

| Order Fonm | | Index | | Articles | | Tahle of content | | Page Murhers |

Article Murber

| Producer | | Legal | | Description |

Diata

We recognize that we have a little problem with , articles” and , article number®
which we solve by pushing ,article number* back on the same level as ,,price® ete.
and introduce ,article® as the new parent element. We also notice that we need to
distinguish between many things (articles) and only one thing (article)

10

Step five: Create order

| Tale of comtent | | ticls | | Order Form | | Tndex |
Article [Description | [Producer | [Pt | [Price | Article Legal
Turnber Data

Again we discover some problems: Page numbers need to go everywhere in our
catalog. And we want them to be generated. Let‘s exclude them for now. Order seems
to be more important in the catalog main tree than in the article sub-tree. But it looks
ok to start with article number there and end with the legal stuff.

Step four: combine trees (2)

| Order Fonm | | Index | | Articles | | Tahle of content | | Page Murhers |
Price Article [Producer | [Legat | [Deseription | [Anticls Husdber | [Piotue |
Diata

Now we can merge the two trees of our catalog easily. But it still does not look right.
Istn‘t there some kind of ORDER in a catalog? Meaning TOC comes first, index last
ete.? We need to get some order into our catalog model.

11

Step six: Create cardinalities

| Table of content |

[ftics | [OrderFom | [Index |
Article [Deseiption | [Producer | [Pitue | [Price | Article Legal
Hureber Diata

How many of each thing do we have in the catalog? We decide to use the following
simple notation: 1 for one and only one, + for at least one, * for 0 or many, ? for 0 or
1 and a number or range for a specific number or range of numbers (13, 2-12 ete.).
We notice that by doing this we also distinguish between MANDATORY and
OPTIONAL things in our catalog. ,,Picture® ¢.g. is an optional thing because there
can be 0 pictures for an article. And every article now must have a description.

Step seven: refine structure (1)

| Table of content \ | Aticles | | Order Foma | \ Index |
Article [Deseription | [Producer | [Pictur | [Price | Articls Legal
Turaher Data

Some of our things in the catalog look a little coarse: ,,Producer e.g. could have
some more internal structure like address, contact person, telephone/fax, location ete.
And what about ,,Order Form®. There is certainly more structure in this but we would
probably repeat elements from the main tree there. We decide to skip order form for
now and treat it as a separate trec whose contents ,refers® to elements in our main
tree. BTW: we cannot ,,refer to anyting yet but we write it down as a requirement.

Step seven: refine structure (3)

| Tale of comtent | | ticls | | Order Form | | Tndex |
: Term E‘?age Murnbers
ArtickRef 7
[] [
Article [Description | [Producer | [Pt | [Price | [rticke Delivery Legal
Turnber Data
| Fhone | | HMame | | Location | | Contact | | Logn | | Cuantity | | Rehate |

Things arg getting more complex now. We still feel that ¢.g. picture would need more
structure (what if somebody cannot see?). We still miss a delivery element saying
how long yvou have to wait for an article to be shipped. , Picture® is troublesome for
other reasons as well: we don‘t want the pictures in our database, we only want
REFERENCES to pictures there (We've also heard that XML does not embed
pictures and instead uses references as well.) How do we reference pictures? And last
but not least: how detailed should we/could we be in our model?

12 14
Step seven: refine structure (2) Step eight: Define Housekeeping Info (1)
[Tableofoontent | [Astickes | [OmerFomn | [Indexr |
Term Page Mumbers
[
[Tabls of sontent | [actisls | | [OvbrFom | [mmaex | | EffeotiveDate | | ExpinationDate |
Aticle [Deseription | [Produser | [Picturs | [Prce | [rticte Delivery Legal
Hurmber Data
| Fhone | | Hame | | Lacation | | Contact | | Logo | | Cuantity | | Rebate |
Things arg getting more complex now. We still feel that e.g. picture would need more Some meta-information is needed to distinguish different versions of our catalog. A
structure (what if somebody cannot see?). We still miss a delivery element saying change log element could be added as well. Possibly also the names of our authors
how long you have to wait for an article to be shipped. ,,Picture® is troublesome for with an unique ID each.
other reasons as well: we don‘t want the pictures in our database, we only want
REFERENCES to pictures there (We've also heard that XML does not embed
pietures and instead uses references as well.) How do we reference pictures? And last
but not least: how detailed should we/could we be in our model?
13 15

Step eight: Identify Re-usable Things (2)

Producer

‘Phone | |Name | |Location | |Contact | |Logn |

wProducerf* is a often required type of information. We should make our schema so
modular that we can re-use parts of it in other contexts as well. ,Address* may be
part of Producer but could be used standalone as well.

Three views on your model

Schema
Dresigner

. |

Instance

nstence |:> [OuerForn | [Index | [nticks | <:| User (Rsader)

The schema designer creates a model of a document by defining structure and types
of elements. Instance authors create instances which comply with the schema and fill
in content. End-users get a rendering of those instances (e.g. a complete catalog) in
different media types (online, printed cte.) The art of document design lies in
understanding both the authoring side (creation) as well as the user side (viewing) of
the instances. A Schema designer needs to make a model so that it allows many
different uses (renderings) but still be understandable for the authors. Some elements
will need attributes used in post-processing only. There is NO modelling without
respecting authors AND users (post-processing) needs.

16 18
How much structure and detail? Generated Content

+ The more structure the better you can later on do post-processing of the content. Schema

Diesigner
* More structure also leaves less opportunity for misunderstandings.
* More structure 15 also a guideline for authors ﬂ

| section | | chapter | | tern |
* The more structure you define the more will authors feel forced” into following it. Authors may
feel like filling out forms instead of being creative.
» Wore structure slows dewn the process of creating an instance Instance
Bt ::> |::> [Toc | [anisls | [OmerFomn | [mndex | | User(Reader)
+ Iore structure can lead to a point where not all necessary information i available and authors can
no longer create complete instances of your model
* More structure forces you to define more elements as optional because not every instance will need
all elements. Authoring of our catalog basically means filling in instances of article elements. This
is what the authors are interested in. The schema designer added other elements to the
- - ; model which serve as anchors for the post-processing step. Table-of-content, order
There is clearly a trade-off between structure and free-form. You will need to think . postpro 8 Step . .
. . } . form and index are parts of a catalog which will be generated automaticall IFF the
about how authors will create instances of your model. Don‘t make this too S . . .
] proper structure exists in our catalog model. A TOC without chapters/sections with
cumbersome or authors will no longer accept yvour model. But also force them to fill o
. . . . titles is hard to generate. An index without <termn> marks in the articles cannot be
in those elements which are necessary for a complete document instance and which .
. . . generated automatically.
you need later on for post-processing. Sit down and create some instances of your
model so you feel how it works.
17 19

Step nine: define types (1)

[Tabls of sontent | [ntisles | [Orier Fonra | [ndex |
: Term E‘?age Murbers
rticleRef ?
[fom]
Article [Deseription | [Producer | [Pictur | [Price | [rticke Delivery Legal
Turaher Data
| Fhone | | Hame | | Lacation | | Contact | | Logo | | Cuantity | | Rebate |

Things arg getting more complex now. We still feel that e.g. picture would need more
structure (what if somebody cannot see?). We still miss a delivery element saying
how long you have to wait for an article to be shipped. ,,Picture® is troublesome for
other reasons as well: we don‘t want the pictures in our database, we only want
REFERENCES to pictures there (We've also heard that XML does not embed
pictures and instead uses references as well.) How do we reference pictures? And last
but not least: how detailed should we/could we be in our model?

Step ten: define technical elements (1)

| Tale of comtent | | ticls | | Order Form | | Tndex |
G| ArtbeR.ef fem E?age b
Articls
gme [Description | [Producer | Pisturs Price grtticle Delivery Legal
[——, ata
Phone | HMame | | Location | | Contact | Logo

Some things in our model seem to be of more general nature and have little to do with a
catalog itself — these things are needed in other document types as well. Examples are:
References to pictures, term definitions to create an index, possibly a ,,person® or
address® element, an ,,author” element. A means to create areference or Jlink*. You
can decide to model all these technical elements from serateh or decide to steal them (I
meant re-use them) from popular models like docbook. I recommend looking at
docbook, especially at ,mediaobject”, ,,ulink®, index* ete. and use the elements there.

20 22
Step nine: what becomes an attribute (2) Step ten: define technical elements (2)
<figures<titlexSome Title Text</title:
<mediaohjects
<imageobject>
<imagedata fileref=,.somepicture.png”™ format=,PNG" />
</imagechject>
_____ <textobject> <para> This pictures describes xxxxxx </paras
</textobjects>
| Table of content | | Articles | | Order Form | | Index | | EffectrveDate | | ExpirationDate | </mediacbject:>
</Eigqure>
EffectiveDate and ExpirationDate are usually atomic values. They won't be extended T.he medigobject model allows to refer to arbitr.axy media (video, audio,.images) in all
with further child elements and can therefore easily become attributes of Catalog. kinds of. formats. It also allows to entel: alternative tcfxt €. to support disabled people.
This is a step toward modelling the catalog in XML. Don‘t worry about elements vs. The cfa.swst way to use fhose elements is to copy their definitions into your own mod.el
attributes too early: leave room for everything to be extended during the modelling definition (which we w111 create l:.it.er on as a DTD or X5D schema). X5D schema will
process and only then determine atomic values (attributes) allow you to re-use existing deﬁmtlon.s. Name clashes can be solved through the use of
name space definitions. The example is from the docbook did.
21 23

Step ten: define link elements

ArticleRef

| | LinkType

| ArticleID

Some articles in our catalog might be related with each other. The Complements element
allows us to express those dependencies which could have several possible types: e.g.
inereases use, necessary, practical extension, recommended add-on ete. This makes
browsing our catalog much easier because we can show a user which things belong
together or what optional articles might be useful.

Step eleven: test your model (2)

[
=Pyral version=,1.0% ..
=catalogs
=articles®
=article==<articlennreh er=471 1 <farticlenurober=
=description=4& thingy is a low-budget version of a widget which
can aleo be used as a gadget. </description=

Il Il

| PDF wersion of catalog

=H2= articlegronp: title ...

The next siep in testing is to perform some renderings of your instances. The most
important question: does your model contain everything so that you can support different
media types and create different views on your catalog? You may find some elements
missing, ¢.g. an element to emphasize some text in your description elements (an
<emphasize> tag. You could make these parts blink in the online version and bold in the
printed version. Add them to the model.

24 26
Step twelve: define the physical (entity)
Step eleven: test your model (1)
structure
<redianh ject= Cataln =Pyral version=, 1 0% ..
=catalog= electronics =article==articlenuraber=471 1 <farticlenumber=
=articles=de lectronics; entity =descriptior= 4 thingy is a low-budget version of a widget which
Scomputers; can also be used as a gadget.. </description=
[Actics | [Index | [Order Forra &liruors,
=farticles=
=leatalog> corputer =article==articlenurdb er=9912=farticlernraher=
entity =description=A soft thingy caleulates widgets by assermbling
<9ral version=, 1 0 zadget terplates. It is very nseful <idescription=
=catalog=
=articles=
=article=<articl ber=4711=fartic] ey liguor entity =article==articl b er=001 J=fartic] et
=description=4& thingy is a low-budget version of a widget which =descriptiore=4 liquor thingy is a relaxant device very useful after
can also be used as a gadget. </description= dealing with XL </description=
The model defines vour ,element structure”. ¥ou will find out quickly that you want to
— - - - partition your instances into smaller parts, e.g. to split work between colleagues or to
.It is importunt to create real instances olf your model early on in the process. You will insert fixed blocks of text (your ,Jegal® comments might be re-used for different
m?IﬂIlledlat.edly sfe; th;‘ttifi gt:)o;llan(tlhbad n yo_lll{ (rinodel and aiso how ;asy 1t1s to :;MF products of your companies). You can use so-called ,,entitics* to pull in those parts.
with. A side € ect o s 15 also at you Wi etect_new elements for your cat_ og: In Please note that the parser will pull in the entities and create the final structure of your
tlns case it wou!d b.e nice if a catalog had a title and if you could group articles into instance. This means the content contained in the entities need to fit into the element
articlegroups with titles. Go back to your model and fix it. structure expected by the parser (which it ,Jearns® from your model definition)
25 27

Next Steps

* Create a number of instances of your catalog. Use a xml
editor (xml-edit, morphon, XML-Spy) or just a text editor
(emacs, wordpad etc.)

* Define yvour schema using DTD or XML-Schema notation.
Tools like xml-authority {demo version available) help you
write your schema or dtd.

» Use a parser to validate your catalog instance against the
schema. We will use the xerces java parser to do this.

‘ Next time we will meet in the lab to do exactly this. ‘

28

Resources (1)

e Ewve Mabhler, Jeanne El-Andaloussi, Designing Document
Type Definitions

* Charles Goldfarb, XML Handbook 4% edition: read about
XML Authority and TurboXML in Chapter 36, "Building
a schema for a product catalog".

29

