stateless and stateful packet filtering

Lecture on

Advanced Internet Security
Stateful and Stateless Packet filtering

Walter Kriha

Roadmap

Part 1: Firewall Architecture Part 2: Filtering Technology

* The purpose of a firewall « [P, TCP, ICMP filtering

+ [P components important for + static filtering: ipchains
firewalls » dynamic (stateful) filtering: iptables

* Firewall Types o Filtering limits

« Firewall limits « Firewall piercing

Part 3: Services and Protocols Part 4: Securing Web Applications

« frequently needed services and « Content Management on the web
therr problems » Transactional Services

* dangerous services « Web Application Servers

« middleware protocols

« New threats (p2p, webservices)

» Proxies and SSL

We will deal with firewall issues rather in detail as they have a lot of impact on software
architecture as well.

Goals for today

Learn the characteristics of packet filtering

Learn how to create a static packet filter using stateless
ipchains and stateful iptables

We will cover application level filtering e.g. Web Application Firewalls later

On what can we trigger?

IF Header
Parameters
(e.g protocol top
or udp)

external networl address

J

NIC1

TCF Header
Parameters
(e.g port and direction)

J

destination/source address

Firewall

ICIP Header
Parameters (e. g packet
size, types)

J

internal networl: address

NIC2

from : to

(200 yyyd2670, top
yyy(d067) zxx(20), top

destinationf/source address

The difference between a stateless and a stateful filter lies in the memory about
past requests (both incoming and outgoing) within the stateful filter. It 15 not
necessary to allow all incoming udp requests just because the filter does not
know if they are responses to previously outgoing requests. A stateful filter can
selectively open a specific udp port for a certain time window because 1t has
seen an outgoing request to this port.

Packets and Headers

« JP Header

o JCMP Packet
 TCP Packet
 UDP Packet

Besides context information like on which NIC a packet arrived, the information
contained in headers 1s the most important filtering characteristic available to be

matched by the patterns in filter rules. After each header we will discuss
opportunities for filtering on header elements.

1d token to
help in
fragment

reassembly.

The header
basic
structure
should be
checked
before
filtering

IP Datagram Header

Wersion | header length | Type of Service | Total Lﬁﬂgth

| “Identification | Flags | Fragmentation foseE - "_f_ﬁ R
Time to live | Protocol | I-_Ie_a_-::ier Checlesum w_
Source Address e
Destination Address

“Ciptions | Padding

source and
destination
address need
to be
validated
against I[P
spoofing
atternpts

Check fragment
definitions

TCP (6)
TCHP (1)
UDP (17)
GGP (3)
EGP (8)

etc.

Werify
checlksum
before
filtering

The information contained in IP headers is either used for checks against demial of
service attacks, ip-spoofing etc. or used to route proper requests to the next receiver.
Fragments are very critical because only the first package containg the complete
information. A static packet filter should always have fragmented packets re-assembled
before filtering starts. (details:http://www.freesoft.org/CIE/Course/Section3/7 .htm)

The header
basic
structure
should be
checked
before
filtering

TCP Header

Source pott | Destination port -

Sequence Mumber

Acknowledgement Number

Offzet | Eeserved |Flags | Window

== Checlezum

| Urgent Pointer — —=—————

Connection
tracking can
ke service
specific, e g
active ftp

support

Dices port indicate
that the request is
going to a
privileged port
(zpecific service)?

Connection
tracking can
checl: the
SEqUENCE
numb ers

Drop

packets with

unusual
flags ete.

Once the basic checks for a correct format are done the most important information in
the tcp header are ports, flags and possibly service information embedded in the
content. Connection tracking will use sequence numbers etc. to protect the firewall
from attacks on the tcp stack. Important flags for drop/accept conditions are SYN
without ACK (connection init) and ACK without SYN (response to previous request)

UDP Header

Source pott | Destination port

Length | Checksum

Mote that no |~ data ...
connection
information
15 contained
in a UDF
packet

A stateless (static) filter has no way to distinguish a new UDP request coming from
outside from a response to a previous outgoing request. This makes UDP especially
critical.

ICMP Problem Message Header

Type | Code | Checksum

7| Pointer | unused

ICHE L g Internet header + 64 bytes of original data datagram
messages g

need to be
checked for
extretne
S1ZES

The functions of ICMP message types include redirecting routes (dangerous),
fragmentation information (needed), source flow control (source quench, needed) and
remote host checks (echo etc., dangerous). Please note that a static (stateless) filter

needs to allow all incoming echo-replies because they could be a response to an
outgoing echo-request.

NAT, SNAT, DNAT, Masquerading

MNetwrork
Address
Translation
(ITAT) means
that the
SOUTCE of
destination
address of a
paclket 1z
changed

With Source AT (SMAT), the

Wersion | header length | Type of Service | Total Length

Identification | Flags | Fragmentation Offzet

Time to live | Protocel | Header Checlsum

._ Souﬂ:ﬁ: _Address_:..__ el _ _ _ _ _ _

Destinatiof £ddress —_

(:l.pti;;'..h.ﬂs | Padding

source address 15 changed, e g to
map from private IP addresses to the
real IP address of a firewall, thereby

hiding the internal networle

masquerading is
almost like SMAT
only that there 15 no
static IF address.
Tnstead, the source
©address 13 dynamically
grabbed from an ISP,
e.g via DHCE, pppoe
etc.

With Destination MAT

. (DMAT) the target address
| iz changed, e.g. to allow
transparent proxying or

load-balancing

You want filtering to use the DNATed address but not the SNATed address (you care
about the new target of an internal request but vou don‘t care about which source
address 1s finally used (as long as it 1s not an illegal one of course). That‘s why SNAT

18 best done after filtering.

Ipchains - A chain of rules

throw packet
Header ETTLES: default policy AWAY, ErTor
Parameters Pattern to match -=> action to take message to
(e.g protocol top sender
ot udp, source address -
: : Pattern to match -= action to take
flags, port) throw paclket
. away, no
Pattern to match -= action to take response to
caller
torward

packet to next
logical step

forward
packetto a
different

chain

Rules, pattern matcher and optional history form a filter element. Some default
filter elements exist (Input, Forward, Output) but users can define their own
elements and build chaing of filtering elements.

12 /61

Detault chains (1pchains example)

CECs, input from all interfaces
defragmentation etc. enters here masqueradingfrouting
chain
[PI’E- [s [s e PI’E- e B
> . v Input chain i Fouting * : v Forward Chain
processing processing
¥ l
Trash Trazh
output for all interfaces

responses to
masquerading and non-
tasq. packets

goes through here

Fy

Fre-

ProCessing e

Ctput Chain B

These are the default chaing for all interfaces. Users can define additional chains.
At any point a package can be thrown away. The default policy of a chain should
be .. reject” or ,,deny*. Certain processing applies before the package contents meet
the pattern matching algorithms to ensure proper package forms.

Rules which always apply

* Do net let packets with EXTERNAL SOURCE address come in through your INTERNAL NIC
(thoze packetzs MUST be fakes)

* Do not let packets with INTERNAL SOURCE address come in through your EXTERNAL NIC (those
packets MUST be fakes or you are uging multiple interior routers to the same perimeter network (DMZ)
and they believe that the shortest path is through your perimeter network. This would expose critical
data from the internal network and is a big problem anyway.

* Do not let packets pass with broadcast addresses in the SOURCE address field in either direction. A
reply to those packets would be a broadcast.

* Do not let packets pass with multicast addresses in the SOURCE address field in either direction.
Multicast addresses are always destination addresses.

* Do not allow packets with source routing or IP flags to pass in either direction (man-in-the middle)
* Restrict ICMP packets in size

» Perform re-azzembly of fragmented packets before rule processing happens.

+ Set , default deny™ on all chaing and log denied packets.

* During rule configuration set all chains to ,,default deny“ and remove those rules at the end of
configuration

These rules are independent of network configuration. It is important to implement
these filters IN BOTH DIRECTIONS not only to prevent malicious outsiders from
entering your hosts but also malicious insiders (or unwitting users and
compromised machines) from using your computing equipment for attacks on
others (e.g. distributed demial of service attacks)

Special Modules for Protection

auto-defragmentation: echo 1 > /proc/sys/net/ipv4d/ip_always_defrag

syn-flooding protection: echo 1 = /proc/sys/net/ipvd/tcp _syncookies

no echo broadcast replies: echo 1 > /proc/sys/net/ipvd/icmp_echo_ignore broadcasts
no bogus error replies: echo 1 > /proc/sys/net/ipvd/icmp_ignore bogus_error responses

no icmp redirects: for f in /proc/sys/net/ipvd/cont/*/accept redirects; do echo 0 > $f (for
all interfaces)

no source routing: for f in /proc/sys/net/ipvd/conf/*/accept_source route; do echo 0 = §f
(for all interfaces)

no ip-spoofing: for fin /proc/sys/net/ipvd/cont/*/rp_filter; do echo 0 > $f (for all
interfaces)

log suspicious packets: forfin /proc/sys/net/ipvd/conf/*/log martians; do echo 1 = $f
(for all interfaces)

allow 1p-forwarding for masquerading: echo 1 = /proc/sys/net/ipvd/ip_forward

These commands need to become part of the firewall boot process (in Linux:

fetc/re local) to make sure that they are installed properly. Modules with masquerading
support for special protocols (IRC, real audio etc.) can also be installed by the filter
script directly. (from Klein, Linux Sicherheit pg. 5891f)

ipchains: conditions and actions

* protocol (TCP, UDP, ICMP, IGMP)

» source and destination address

» source and destination port

» TCP connection init (ACK flag)

« [ICMP types

+ [P fragmentation (better solved by pre-assembling fragments before checking)
» interface

* ACCEPT (let packet pass, process it and/or forward it to next chain)
* DENY (throw packet silently away, do not generate error message)
* RETECT (generate ICMP response but throw packet away)

* MASQ (perform masquerading on the packet. Move a response directly to the
output chain. Used in forward chain only)

* REDIRECT (move packet to different port on local host. Can be uzed for
transparent proxying)

* RETURN (Use default policy in a default chain or return from user defined chain)

* NAME of user-defined chain to be called.

A stateless filter

1.2.3.4 (intranet) Hlter (firewall) g_l .tl 2. 1; 14
interae
_ ==
. E] command: ping —
comtnand: ping 912,72 M
— 11.12.15.14 hE
= _ —
command: pong = [iogn;fnd- pong =2
— 1.2.34 S
Attacker!!
i |
command: pong = [';O;l;ljnd- IO
— 1.2.34 S

A host in our intranet sends a ping command (1cmp echo request) to an external host
on the internet. As far as the stateless filter goes this 1s one complete transaction. It
will NOT retain any knowledge about this request. When a pong (icmp echo-reply)
comes 1n the filter can only let it pass through (no matter from where it comes!) or

deny all those packets (disabling the ping service altogether). An attacker can send
echo-replies which have NEVER been requested from internal hosts.

A stateful filter

1.2.3.4 (intranet) Hlter (firewall) g_l .tl 2. 1; 14
[II:”:'D INLETTE
command: ping - comand: ping —
= 11.12.13.14 11.12.13.14
> 1.2.3.4 -> 11.12.13.14 (ping) >

T [— _ —

command: pong = [iogn;fnd- pong =2
= 1.2.3.4 2.3

&

1.234 = 11.12.13.14 (ping)

There 15 a packet from 11.12.13.14 to 1.2.32.4 (pong), was there a ping from
123410 11.12.12.14 previously? if YEZ, accept, if N O, drop packet

A filtening firewall keeps a table of outgoing requests. If a packet comes in from the Internet
it 18 matched against the outgoing requests (destination, port, protocol). The whole mapping
lasts only for a certain time (timeout) until the filter clears the request information. If a
response 1s ,late™, it gets dropped. An attacker would need to spoof the real sender AND hit
the little window where the filter waits for responses AND the response must match port,
protocol and destination. This works good for connectionless protocols (UDP, ICMP) but
works even better for TCP if e.g. sequence numbers are checked as well. Even exotic
protocols with several connections and directions can be tracked.

=tart of chain:

More specifc rules are at the
top ofthe chain,

More general rules are at the
bottom of the chain

Chain default policy: DENT or
ACCEPT

A chain of rules

Tzer defined or default chain:

Pattern to match -= action to tale

Pattern to match -= action to tale

Pattern to match -= action to tale

End of o

chain

Beginning at start of
chain, every rule 1z
matched against the
packet. The first rule
which matches gets its
action applied to the
packet and the
processing in this chain
iz terminated. The
package may be
forwarded to another
chain.

Chain manipulation commands work on the whole chain. Rule manipulation
commands only on a specific rule.

Chains calling chains

e.g. mnput chain
mychain

Pattern to match -= action to tale call

. . - i
Pattern to match -= action mychain Pattern to match -> action to take

Pattern to match -= action mychain

Pattern to match -» action to take |
FPattern to match -= action to take

return to (if
packet
wasn't
accepted)

End of o B

chain

A user defined chain can be the target of an action. Processing (filtering) will continue
with the first rule in the new chain and end when a rule matches the packet or at the
end of the chain. At that point control returns to the calling chain.

The 1pchains user level driver program

Eules configuration _ .
file ip chains
progratmn
D —— i
Unix user \/
level
vy chains
HMetworle stack
Unix m
kernel module like tep-syn @

cookies, p-spoofing
protection etc.

Only the program that installs the rules 1s located in user space. The netfilter/iptables
framework provides an interface and queue which allows filtering to happen also 1n
user space. Kernel space filtering 1s extremely fast but also limited in functions and
very critical. An error in a module will crash the kernel for sure.

ipchains command syntax

ipchains command [chain] parameter action

Example:
* ipchains —P mput DENY (set default policy for input chain to DENY)
» ipchains —f output (delete all rules in output chain)

* ipchains —A output -1 $EXT IFACE —p tcp —s SMY IPADDR
SUNPRIVILEGED PORTS — destination-port 80) ACCEPT (allow http connections
from this host and ports beyond 1023 to any host port 80 using the external NIC)

.Command is one of the 1pchains chain manipulation commands. Parameter is
the pattern to match a request against. ,,Action* 1s either a real action like
LDENY* — dropping a packet, or forwarding the packet to a user defined chain.

Chain manipulating commands

Chain manipulation:

» Create user defined chain (-N)

» Delete user defined chain (default chains cannot be deleted) (-X)
» Zero counters on all rules in chain (-7)

* Flush default or user defined chains. (-F)

» Install default policy of a chain. (-P)

» List rules in chain (-L)

No surprise here: most commands will be the same in the new netfilter/iptables
framework as well. Setting the default policy to DENY on all chains creates a ,.deny
all*“ policy and 1s also useful during rule manipulation.

Rule manipulating commands

Rule manipulation:

» Append new rule to chain (-A)

» Delete matching rule in chain.

with position parameter:

» Ingert, Delete, Replace rule at POSITION in chain
masquerading rules:

» list current masquerading rules (-M —L)

» set masquerading timeout values (-M —S)

Interaktive rule manipulation is tedious and error prone. Luckily there are utilities
which load and store complete configuration files containing a firewall ruleset.
(ipchains-store etc.)

The structure of a firewall config file

Load kernel modules needed

flush all chains, reset counters, delete all chains

Install default . DENTY™ policy in default chains

Define variables (EXT IFACE, INT IFACE,
Metsworks) which will be used in rules later

v Allow loopback interface traffic

Protects host during
manipulation of firewall Tnstall default , DENT® policy
rales. With ipchains the

interfaces used in those
seripts need to be UP! Load special protection modules (ip-spooting

eto.)

Install general protection rules (some just repeat
what special protection modules do)

service specific rules: DIS, FTE, TELWET etc.

Delete first default ,DENTY™ rule in every chain

Ipchains and also iptables follow this structure. The biggest part 1s of course the
definition of rules for each service that needs to pass through the firewall.

A word on notations 1n ipchains

» Actions are in UPPER CASE (e.g. ACCEPT)

« interfaces can be given with + notation: e.g. ppp+ means all ppp... interfaces in the
system

* chaing are in lower case (e.g. input)

» the check for SYN bit set and ACK NOT set 1s —y or —syn. This 1s a sign for a tcp
connection request.

» Significant part of a network can be described like: (CIDR notation)
- 123.456.789.0/24 (the first three byte are significant)
- 123.456.0.0/16 (the first two byte are significant)
- 123.0.0.0/8 (only the first byte 15 significant)

- WP

ipchains examples

A short standalone firewall (from roaring penguin pppoe)
Redirection to transparent http proxy

User-defined chains

Building a DMZ

A bare bone standalone firewall

Interface Lo Internet
EXTIF=pppt+

ANY=0.0.0.0/0

#no complete default deny policy

ipchains -P input ACCEPT
ipchainsg -P cutput ACCEPT
ipchainzs -P forward DENY
#flush all chains
ipchaing -F forward
ipchains -F input

ipchains -F output

Deny TCP and UDP packets to privileged

ipchains -A input -1 -i SEXTIF
ipchains -A input -1 -i SEXTIF
Deny TCP connection attempts
ipchainsg -A input -1 -i SEXTIF

Deny ICMP echo-requests

-d 5aNY 0O:

—-d SANY 0O:

-p tcp -¥

ports
1023 -p udp -3 DENY
1023 -p tecp -3 DENY

-3 DENY

ipchaing -A input -1 -i SEXTIF -g SANY echo-request -p icmp -3 DENY

from: roaring penguin pppoe package. This i1s surely only the beginning of a
firewall strategy. Masquerading can be enabled with: ipchains -A forward —s
$LocalNet —d $Any -1 MASQ ; echo 1 = /proc/sys/net/ipvd/ip forward

Redirect to transparent http proxy

INT IFACE=192.1.1.0/24
ANY=0.0.0.0/0
ipchains -A input -p tcp -s SINT_IFACE -d $ANY 80 -j REDIRECT 8080

Everything coming from the internal network with a destination of anything and
port 80 (http) will be redirected to the local port 8080 where a http proxy (e.g.
squid) 18 running,

User defined chains

Create your own chain

/sbin/ipchains -H my-chain

Bllow email to got to the server. This is an THNCOMTING connection request

/shin/ipchains -A my-chain

-5 0.0.0.0/0 smtp -d 192.1.2.10 1024:-j ACCEPT

#f BAllow email connections to outside email servers. OUTGOING conn.redq.

/shin/ipchains -A my-chain
#f Allow Web comnections to
/sbin/ipchains -A my-chain
Allow Web comnections to
/sbin/ipchains -A my-chain

Allow DHS traffic. Opens

-5 192.1.2.10 -d 0.0.0.0/0 smtp -j BCCEPT

your Web Server. INCOMING

-5 0.0.0.0/0 1024: -d 192.1.2.11 www -] ACCEPT
outside Web Server. OUTGOING

-5 192.1.2.0/24 1024: -d 0.0.0.0/0 www —j ACCEPT

ALL vour UDP ports for UDP traffic originating

fifrom any server at port bh3. Do you really want this?

/shin/ipchains -A my-chain

-p UDP -s 0.0.0.0/0 dns -d 192.1.2.0/24 -j ACCEPT

This chain opens quite a number of ports for incoming connections. For DNS the
use of an intermediate DNS server using port 53 would be advisable.

Digression: Model Checking

Allow Web connections to outside Web Server. OUTGOING
/shin/ipchains -A my-chain -s 192.1.2.0/24 1024: -d 0.0.0.0/0 www -j ACCEPT

[s the 1pchaing statement a true implementation of the model (informally specified in the
comment)? Not really. Think about the protocol used in www traffic and what the rule
defines? The rule actually does allow connection establishment from internal network to
any destinations port 80 using ANY kind of protocol. This 18 NOT what the model
gpecified. A model checker would build a space with possible solutions of the model,
reconstruct such a space from the rule and compare both. While doing so it would detect
that the rule allows more solutions/options than the original model.

To make such model checking easier the rules/model should be monotonous, i.e. always
adding rights but not taking some away. Following this advice 1s also good when building
rule based filters manually: Do not mix deny and accept rules!

Using a DMZ

192.168.1.0/24 192168, 1.250 filter (firewall)

{internet)
{intranet)

= n

= l

L4

Y

&

oo
o| o —
n‘ ‘n‘
ollo

192.84 219128 smtp host
192.84 219129 e DINE host
192.84.219.130 === o WER host

We are using routable internet IP addresses for the DMZ, but internal-only addresses for
our Intranet. The DMZ provides mail services (SMTP), DNS lookup via a DNS server

and also access to a web server running on host 15.16.17.20. This 1s an example from the
linux IPCHAINS-HOWTO (Rusty Russel)

Separating traffic (1)

192 168.1.0/24 192.168.1.250 filter (firewall) {internet)
{intranet) [ID 1
% e
GOOD o pped ~ | BAD
eth(

192.84.219.126

192.84.219.128 DW

192.84.219.120

this setup results in 6 different chains: good-bad, bad-good, good-dmz, dmz-good, bad-
dmz, dmz-bad plus one chain for icmp traffic. To secure traffic directed at the firewall

directly, 3 more chaing are defined: good-if, bad-if, dmz-if to separate traffic coming in
from the firewalls three NICs.

Separating traffic (2)

ipchains — I good-dmez ipchains — N dzm-good
ipchains — M bad-dmsz ipchains — M dzm-bad creation of user defined chains
ipchains I good-bad ipchains N bad-good

ipchaing =1V icmp-ace

iprchains -4 forward — 192,168, 1.0/24 —1 eth0 — good-dinz
ipchains —4 forward —s 192 168.1.0/24 —1 pppl — good-bad
ipchains —4& forward — 192.84.219.0/24 —1 pppl — dme-bad
ipchaing — & forward —s 192 84,219 0724 —1 ethl —1 dmz-good
ipchains —4& forward —s —1eth0 — bad-dms=

ipprchains -4 forward —s —1ethl g bad-good

ipchains —4 forward - DENTY -1

Only the outgoing interface 1s available in the forward chain. This forces us to use the
source-address for filtering (protected by rp-filter)

A complete sample

we will discuss the packet filter script by Rusty Russel (Do you find
the problem with the ICMP user defined chain in this script?)

Testing 1pchains

ipchains -C [chain] parameter action

Original rule:

sipchaing —A output -1 $EXT IFACE —p tcp —s $MY [PADDR $UNPRIVILEGED PORTS
— destination-port 80 -] ACCEPT

« Command to generate test packages according to above rule:

ipchains —C output -1 SEXT IFACE —p tep —s $MY IPADDR 6000 — destination-port 80 —
i ACCEPT

Most rules can be turned into test generators by using the —C option instead of —A
or —I. Please note that port RANGES are not possible with —C. The above example
should result in ,,accepted™.

Content filters and special protocols: ftp

= 3 IRy
command: port 4712 cotmand: port 000
control pott > . ftp contrel
4711 port 21
< 2000 -
data port 4712 “ s001 fip data port

20

The client puts the port number of its data-recerving port into a packet to the fip-
servers control port. The masquerading firewall needs to look into the data packet,
detect the port number, open dummy control and data ports at the firewall and route
INCOMING data connection requests to the clients data port. This 18 a typical
example for a problematic protocol in two ways: first it hides network information in
packet data — making NAT hard to perform. And secondly 1t expects INCOMING
connection requests to be accepted. Only 1f the firewall tracks the connection and
knows the protocol will it be able to detect that the data request from the ftp-server is
really a response to a control request from the clent.

Requirements for Packet Filters

Filtering per interface
Filtering on incoming and outgoing packets per interface

Order of rules needs to be respected by the configuration
tool — no re-ordering of rules.

Logging of accepted and rejected packets must be possible.
Logging itself needs to be configurable with respect to
device and quantity (to avoid DOS by log-flooding)

Rules need to be validated and tested.

A critique of ipchains

« No stateful filtering (no actions based on packet history)

+ packets need to pass all three chains making rules
complicated

« Lacking extensibility with respect to patterns and targets
+ Software design in kernel needed re-design.

« Redirection of packets to user space lacking.

Still, ipchains is a stable and reliable mechanism to build a firewall on a general
purpose Linux system. The new netfilter/iptables are of course a different game.

Differences between 1pchains and 1ptables

« packets pass all three chains » packets pass only ONE cham
(nput, forward, output) * Incoming and outgoing

* Only outgoimng interface interfaces available n all chamns
available m FORWARD chain » clear separation of filtering

+ Filtering and mangling mixed (INPUT, FORWARD,
(no separate ,tables®) OUTPUT) and mangling/NAT

+ Filter rules affected by (PRE/POST-ROUTING)
masquerading (SNAT) + Filtering rules independent of

masquerading. Rules operate
always on real addresses.

Netfilter Architecture 1n 1pv4
through Firewall
—)

[
NF IP PRE ROUTING —> NF _IP FORWARD —> NF _IP POST ROUTING

|

NF P LOCAL IN

\w

to Firewall from Firewall

AllNF TP xxx points are hooks where a table can register for a callback if a packet
passes. The most important change compared to ipchaing 1s that every packet in the
filter tables passes ONE and ONLY ONE chain. The chains are the processors of the

respective hook callback,e.g. NF IP_LOCAL IN events are processed in the INPUT
chain of the filter table.

Default chains (iptables example)

Lestination MAT

all input not directed at
the firewall itzelf goes

here

Forward Chain

source AT happens here

. Pre- :
> . * Eouting
processing
Input chain

l

- Post- -
processing
Eouting
firewall generated
: aclets
Ctput Chain P

anyway.

No packet modification 1s done in INPUT, FORWARD or OUTPUT chains. No
filtering does happen in the pre- and postrouting phases: If NAT is used, only the
first packet of a request would hit this chain and the rest could not be filtered here

An OO-view on the netfilter framework

«interface» «interface» AbstractTable
MNetFilterFramework register Table
FdLEEEL
TEOTSTET TAOTE TaOTE) h-c-mmmeemmmmmmn FHCRET [—— prerﬂulmg{packet}
unRegisterTable{Table) hrerouting{packet) boolean input (packet)
RegisterModule(Name, hoolean input (packef) boolean forward
Module) boolean forward (packet)
Ur‘lreglﬁlerhﬂaﬁule{Name} rpal:ket:f honlaan ottt frac brath
Bt D ate b b= s Bl ot O e bty
Filter Nat MEHQ|E
overarite only filterin . :
‘ Clon ¥ d T Goolean npul (PackeD Packet preruullr_lg{packet} Packetpreroutlﬁgtpatkel}
boolean forward Packet postrouting (packet) Packet postrouting (packet)
nacket)

Eerwri!e modifying j
lharks

Template/hook pattern as well as strategy and factory patterns could be used to design

the netfilter framework. A table implements a number of hooks which will be called
from the framework at the proper time.

An OO-view on the netfilter framework

<interface» T ;I :’1 chain from j «interface»
Chain Rule
""""""""""""" adamatchimalc
addRule{Fosifion, Rule) addCommand(Comman
deleteRule(Position, 3)
el addTarnetTarnef)
«interface» «interface»
TargetFactory CommmandFactory
gefTarget(Token) getCommand(Token)

Lcanstruet rule from pa rts:m‘

_|RuleBuilder

«interface»

“ |setRuleText(Tex)

)
&
¢
L

get parts \

«interface»

MatchFactory

getMatch(Token)

44] 61

Special Modules for Protection

dynamic IP addr: echo 1 = /proc/sys/net/ipvd/ip_dynaddr
(and those mentioned in the ipchains lecture!)
additional modules:

ip_tables, ip_conntrack, iptable filter, iptable mangle, iptable nat, ipt LOG, ipt_limit,
ipt_state, ipt_owner, ipt. MASQUERADE, ip_conntrack fip, ipt conntrack irc

Modules are mnstalled with /sbin/modprobe [modulname]. Especially important are the
connection tracking modules.

iptables: conditions and actions

* protocol (TCP, UDP, ICMP, IGMP)

» source and destination address

» source and destination port

» TCP connection init (ACK flag)

« [ICMP types

+ [P fragmentation (better solved by pre-assembling fragments before checking)
» interface

* ACCEPT (let packet pass, process it and/or forward it to next chain)
* DENY (throw packet silently away, do not generate error message)
* RETECT (generate ICMP response but throw packet away)

* MASQ (perform masquerading on the packet. Move a response directly to the
output chain. Used in forward chain only)

* REDIRECT (move packet to different port on local host. Can be uzed for
transparent proxying)

* RETURN (Use default policy in a default chain or return from user defined chain)
* NAME of user-defined chain to be called.

iptables command syntax

iptables -t table -command [chain] [match] —j [target/jump]

Example:

* iptables —A INPUT —1 $IFACE —p tep —sport 80 —m state —state ESTABLISHED —
ACCEPT (allow incoming web traffic if it belongs to a previous outgoing request)

o iptables —A INPUT —1 $IFACE —p tep —sport 20 —m state —state ESTABLISHED,
RELATED — ACCEPT (allow incoming ACTIVE fip traffic if it belongs to a previous
outgoing request, even though the incoming request is for a new — but related - port)

« iptables —A INPUT —1 $IFACE — p udp 4 LOG -log-prefix ,,UDP Incoming:*
siptables —A INPUT -1 $IFACE — p udp - DROP (log and drop all udp traffic)

The , filter* table 1s the default. Other tables (nat, mangle) need to be specified
explicitely. Note that most of the syntax is still the same as with ipchains.

Match Modules

-m <match module> -- <module parameter=

Owner (gid-owner, pid-owner, sid-owner). Matches

packets from specific owners. Some ICMP packets do not
have an owner.

TCP/UDP/ICMP/TOS/MARK

mac address (interesting in connection with DHCP)
multi-port (range of non-sequential ports)

limit (see next pages)

state (sce next pages)

Limit

--limit hits/time

iptables — & TNPTUT —p icmp —icinp-type ping —m limit 10/minute -1 LOG
iptables =4 INPUT —p icmp —icmp-type ping — DROP

litnits how many times a rule applies per time pertod. E g do not

accept and log more than 50 echo request per 5 minutes to prevent
log bazed DOE attacks

The basic sequence of a bandwidth limiting rule pair 15 always: first comes a limited accept rule, followed by an unconditional
DEOCP rule on the same pattern.

State

--state INVALID, NEW, ESTABLISHED, RELATED

iptables — & OUTPTIT —tn state —state WEW, ESTABILISHED, EELATED — ACCEPT
iptables — & INPTIT —m state —state ESTABLISHED, EELATED — ACCEPT

Allows only outgoing new connections. Allows established and
related connections 1 both directions. Eequires a default deny
policy tnstalled.

The sate module does advanced connection tracking and knows e.g. that a certain
UDP packet 15 a response to a previous outgoing UDP packet. A connection 1s
LESTABLISHED if several packets have been going back and forth — this way
even connectionless UDP packets can belong to an ,,ESTABLISHED* session.
.RELATED* connections are physically independent connections which
nevertheless belong to an existing connection (like active ftp)

Load Balancing

-A PREROUTING -i ethQ -p tep --dport 80 -m state --ztate NEW -m nth --counter 0 --every 4 --packet 0 '
DNAT --to-destination 192.168.0.5:80

-A PREROUTING -i ethQ -p tep --dport 80 -m state --ztate NEW -m nth --counter 0 --every 4 --packet 1 '
DNAT --to-destination 192.168.0.6:80

O with
Srandom™:

-A PREROUTING -i ethd -p tcp --dport 80 -m state --state NEW -m random --average 25 ' -) DNAT --to-
destination 192.168.0.5:80

-A PREROUTING -i ethd -p tcp --dport 80 -m state --state NEW -m random --average 25 ' -) DNAT --to-
destination 192.168.0.6:80

From Barry O*Donovan, Advanced features... (see ressources)

Patch-O-Matic

INew matches:

siplimit: restrict connections from a certain host or network
+ length: filter packets based on their lenght

e nth: filter on each nth™ packet

+ string: match against a certain string in a packet

new targets:

« FTO5: sets TTL to arbitrary value
¢ TJLOG: user space logging

« NETIMAP (SHAT like behavion)

See the netfilter extensions howto for more matches and targets. The iptables user

space driver program 1§ so flexible that it will deal automatically with new matches or
targets that were installed.

Targets (actions or jumps)

+ ACCEPT (ends rule processing in this chain)

+ DECP (throws packet away without error message to sender)

+ EEJECT (same but sends error message, worls only in input, forward and output chain)
¢ LG (logs packet AND continues: the only target that does not stop rule processing)

« EETTEN {return back from user defined chain to default chain)

« QUETTE (zends packet from kernel space (top stack) to user space for further processing. Cotnes with complete APT for
proxies etc.)

+ EEDIEECT (routes packets to a pott on the local host, used e g for transparent proxving)

+ userdefined target (subroutine like flow of control to user defined chain)

+ MARE (used in mangle table to set internal routing information for this packet in the kernal)

o TS (sets routing information within a packet, can be communicated to other firewalls or routers)

« MIEEOE (experimental, exchanges source and destination address of a packet and sends it back. Watch cut for
spoofing attack s creating loops)

o SHAT (Source AT, used to map internal addresses to areal IP address)

¢« DMAT (Destination IMAT, used e g to forward incoming internet packets to servers on the internal (hidden) networlk or
DZ)

¢ MASOUEEADE (like SMAT only with dynamic IP address)

+ TTL {change time-to-live value in mangle table, e g to hide several machines from an ISP or to hide a firewall from a
firewalking probe)

« TLOG (user defined logging facility, Multicasts packets to user space loggers)

Nat with netfilter

=D NF_EKP\RE_ ROUTING @m=) NF_IP_FORWARD momd NF_IP_POST ROUTING ===
/

Destination AT Routm source NAT (e g
(e.g. transparent g masquerading) 1s

proxying) is done done through this

th h thiz hook hoolk in chain
. “"1‘1‘5 les:r ﬁ"T" IF LOCAL IN NF_IB, LOCAL_OUP” «17aT OF
in chain
chain of the ITAT Il-lﬂ;ﬂ_s QEEhRi&iET
table 11::]jlin of the
able

Hat table
(POSTROUTING PEEEROTT
TINGMASQUEEREADE)
to local from lo;al
processing processing

The big difference to ipchains 1s the fact that now all packets pass with their real
source/destination address through the netfilter process and routing 1s based on those
real addresses as well. This make logging and decision making much easier.

iptables examples

1. rc.firewall script
2. rc.DMZ. firewall script

These examples are from the Iptables tutorial by Oskar Andreasson

1.2.3.4 (intranet)

— sshitelnet

cotmnmatd:

Firewall Piercing

filter (firewall)

%ED%

command:
sshitelnet

atbitrary socket programs

i

IF Emulater (PPER/ELIEFR)

Telnet or 33H tty connection

L4

allows top connection to some
host some port

11.12.13.14
{internet)

Tunnel created by telnet or S5H

Y

IF Emulator Daemon

(PPPD/SLIRP)

-

e

Telnet or 55H daemon

The only requirement for firewall piercing 1s: you must be able to connect to some port on a
machine on the Internet. This machine runs a telnet or secure shell daemon (possibly started
after receiving a mail from the client behind the firewall using procmail). On top of this tty
like connection a generic IP emulator daemon emulates a complete IP connection over this
tty. The client can then run arbitrary socket based programs directly through this channel into
the Internet. Routing needs to be carefully configured to separate tunnel and tunnelled
addresses. Works like a VPN with ssh (http://tldp.org/HOWTO/mini/Firewall-

Piercing/x296.html

Firewall Piercing: How P2P Software does 1t

1. Eegister with
Server, get partner
IP and Port
(1.2.3.4-8000)

=kype server

1. Eegister with
server, get partner
IP and Port
(11.12.13 1450000

SOurce;
= : 2 114 ket t
5 3 48000 P PREATS D 11.12.13.14:5000
R 11.12.13 145000
HD [1] > ”D []
= |:| Source: OO0 Source: 2000 o I:I
-4 >
X
IF Firewall .
1224 2. Tdp packet to [P Firewall
e 11.12.13.14
- 1.2.3.4:8000
TP host in intranet: IP host in intranet:
192 168.1.20 192 163.1.20

The trick 15 1n the 2. step: by sending a upd packet to destination address:target port (which

gets thrown away) the OWN firewall learns to expect packages from this address because it
believes them to be a RESPONSE (see Jiirgen Schmidt, the hole trick in ressources)

Resources (1)

www. linuxguruz.org/iptables The portal for all iptables related
information. Especially useful are:

Lmux 1ptables HOWTO

http://www . lmuxguruz.org/iptables/howto/iptables-HOWTO. html
Netfilter Extensions HOWTO - Patch-O-Matic

http://www linuxguruz.org/iptables/howto/metfilter-extensions-
HOWTO . html (really interesting matches and targets, e.g. load-
balancers)

Lmux 2.4 Packet Filtering HOWTO
http://www. linuxguruz.org/iptables/howto/packet-filtermg-
HOWTO html

Manpage of IPTABLES
http://www.linuxguruz.org/iptables/howto/maniptables.html

[PTables Tutorial
http://www. bomgworld. com/workshops/linux/iptables-tutorial/ (the
complete tutorial on ptables)

Iptables Basics
http://www.linuxnewbie. org/mht/mtel/security/iptables basics.html

Resources (2)

Netfilter framework in Linux 2.4

http://www.gnumonks. org/papers/netfilter-1k2000/presentation. html
(a description of the whole framework. You will understand what
tables really are after reading 1t. Lots of template/hook design
patterns.

Iptables - What 1s 1t

Jiirgen Schmidt, The hole trick, How Skype & Co. get round
firewalls http://www.heise-security.co.uk/articles/82481 Explains
udp piercing used by p2p software

Barry O‘Donovan, Advanced Features of Netfilter/Iptables.
Shows how to use NAT table and random/nth for load balancing
and other matches. http:/linuxgazette.net/108/odonovan.html .
L.ook for loadbalancing and iptables for other solutions to
loadbalancing.

Resources (3)

Craig Hunt, TCP/IP Network Administration. If you start building
firewalls you will need this book if questions about routing, sockets
etc. show up. Contains headers, protocols and services.

Douglas Comer, Internetworking with TCP/IP. Code explained. A
classic 1f you want to build your own protocol stack or want to
understand how TCP REALLY works.

Elizabeth D. Zwicky, Simon Cooper, Brent Chapman: Building
Internet Firewalls (also available in German this book covers most
types of firewalls and also discusses services, protocols and
middleware. Use the first part as a general introduction and the rest as
a dictionary 1f users request certain services.)

Tobias Klem, Linux Sicherheit. Contams example script for ipchamns.

Scott Mann, Ellen L. Mitchell, Linux Security System. Use open
source tools to achieve host and network security with Limnux.
Contans a larger part on ipchains.

Femer Filtern, c‘t 2001 Heft 26. A good explanation of the new
netfilter/iptables firewall concept in Linux.

Resources (4)

Rusty Russel, IPCHAINS-HOWTO (contains DMZ
example and use of user defined chains)

Linux Magazin 04/05 page 6: ,,Zecke® from Tobias Klein.
A syscall proxy which uses an existing application
protocol to transport syscalls from the attacker to the
victim and routes results back. Stateful inspection and
application level tracking do not help as the same
connection and established protocol are used

