lecture



Lecture on

Bufter Overtlows

Technical Foundation, Attacks and
Countermeasures

Walter Kriha




Goals for today

What 1s a buffer overflow? Types and risks
Learn how buffer overlows attacks work
C-language specific weaknesses

The basics of machine architecture and language runtime
needed to understand how a buffer overlow works

Trace a buffer overtlow from c-code to assembly code to
memory layout

Defensive measures (stack protection, libsafe, canaries, data
execution protection, address space layout randomization)

Are pictures safe? Is text harmless? What are the consequences for a securnity
architecture? How can you prevent such attacks?




The importance of buffer overflows

Previously between 50% and 80% of all known
vulnerabilities across operating systems were owed to
buffer overtflows. And while the focus of attackers has
shifted to applications and their input validation

problems buffer overflows are still a very dangerous
vulnerability.

They are also hard to detect in both open source and binary distributed software — even
though there is evidence that the open source process with hundreds to thousands of
people scrutinizing code seems to have an edge here. But still: some code has been
carefully audited and still buffer overflows were found later (e.g. bind). Manual
mspections seems to be no cure and there 15 only one automated cure nght now: do not

use languages which are not memory safe (e.g. with unbounded buffers or unsafe type
casts like C, C++)




O The Full Drama. ..

-

Application with no secure zones within its code and with full

Access to system calls anytime <:

Programming language without memory and type safety

3

Malicious
code

Input
validation
problem!

Access control lists
Giving an application
All rights of the user

It 1s not just the fact that applications make errors in their input validation routines.
Powerful user rights which are always apphed in full or weaknesses in privileged code
lead to complete takeovers with no damage restictions. A security analysis
theoretically would have to look at the complete system in detail — something that is

simply not possible.




Buffer Overflows from a security point of view

* In many cases they allow complete take-over of a machine by mtruders
«  Worm kits allow exploits within hours of invention.

« Attacks based on buffer overflows are hard to code (imagine what a
person that 1s able to create a buffer overflow can do to your machine!)

+ Such attacks can be packaged into easily usable attack tools allowing
script kiddies to gain access to machmes.

« Some prevention is possible using kernel and/or compiler technology.
« Today most systems rely on detection and updates (after the fact)

« Buffer overflows are deadly because of violations of the principle of
least authority (POLA) m most operating systems.




Frameworks for Exploits

Worm Framework
with code for
probing
-intelligence gathering
replication
temote control

s

Iedia
Plaver

exploits as
plug-ins

Modern framework technology separates everyday chores like finding proper systems,
replicating the attach code and allowing remote control from the actual attack code on
a specific program. If a new exploit 1s detected the frame for using it does already
exist. This makes a ,,reaction within days* promised by software vendors look much

less attractive.




What 1s a buffer overflow technically?

upper memory addresses upper metnoty addresses

C statement:;

Ower

. Written
strepy( A, B),
Buffer Buffer <_, Buffer
E E E

Eufter : Eufter
A :> A

The library function strcpy copies the source (Buffer B) over the destination (Buffer
A) without recognizing that buffer A is smaller than B. The memory right behind
buffer A will be overwritten with the content of buffer B. This may go unnoticed, can
cause program malfunction OR be used for an attack on the system.




Example: Simple Buffer Overflow

#include <stdio h=

int mainiint arge, char** argv) |
int foo=Nxeeee;
char myArrav[4];
gets(myArray),
printf(" print integer first: %oz ", foo);

printfi"%os ", myArray);

Exceptien: STATUS ACCESS VICLATION at eip=62626Z62

eax=000000=2% =kx=00000000 ecx=0000002% =dx=000000Z%
ezi1=00000000 =d4i=00402970

ebp=0-2626262 e=sp=002ZFEES
program=D:‘walterisecurity\bufferoverflowt over. exe

cg=001B d==0023 «==0023 f==0038 gg=0000 ===0023
Btack trace:
F rams Function Args

531113 [main] over 928 handle exceptions:
Except lon: STAT os ACCESS VIOLATION

545483 [main] over 928 handle exceptions: Erreor
while dumping =tate (probably corrupted stack)

Compile and run thig little program. Type 1n ,,a* letters on the keyboard and type
return. Start with one ,.a* and watch the output. Then use more and more ,,a* letters.
What happens to the output? When does the program crash? What does the
crashdump show? Look especially at the EIP and EBP registers? Do you see your ,,a*
letters somewhere? If vou detect your input pattern in the registers of the CPU you
know that you have found a way into the program. The rest 15 mere work.




Example: Simple Buffer Overflow (2)

#include <stdio.h=>

int main{int argc, char** argv) {

int foo=0xeeee;
char myArray[4];
gets(myArray);

printf(" print integer first. %x ", foo);

printf("%s ", myArray),

h
Keyboard Input {(with return) Display Output
a Feeea
aa Eeee aa
aaa Eeee aaa
aaaa Ee00 aaaa

dddddadddaadaa

Core dump with EIP = 6161616161616161 (Hex 61
—= )




Our ,aaaaaaaa..” input from keyboard is now the address
where the next instruction should be read by the CPU. Now we
know how to point the CPU to code we placed on the stack

Exception: STATUS_ACCESS_VIOLATION ateip=61616161 )
eax=00000012 ebx=00000004 ecx=610E3038 edx= esi=004010AE
edi=610E21AQ
ebp=61616161 esp=0022EF08
program=D:\krina\security\bufferoverflowiover.exe, pid 720, thread main
cs=001B ds=0023 es=0023 fs=003B gs=0000 ss=0023
Stack trace:
Frame Function Args

90087 [main] over 720 handle_exceptions: Exception:
STATUS_ACCESS_VIOLATION

104452 [main] over 720 handle_exceptions: Error while dumping state
(probably corrupted stack)

A program crash is a way into the system!




Function Parameter
Leftmost Function
Parameter
RETURN Address
Layout Caller BF copy
Foo
myArray[3]
myArray[1]
myArray[1]
myArray[0]

Stack

Address
overwritten!

a

a

a

Gets() starts writing here

Kevboard Input (with return)

Stack layout

a

eeee a (first array element)

aa

eeee aa (first and second)

dda

eeee aaa (first, second and third)

dada

ee00 aaaa (4 array elements + zero)

dadaadaadaaadaa

aaaaaaaaaaa (all local variables and the return address
overwritten, crash on function refurn




The kernal trap interface

your code wants to send a message msg to stdout:

push len message length
push msg .message to write
push 1 Jdile descriptor (stdout)
mow A, Oxd system call number (sys_ write)
int 0z&0) : kernel interrupt (trap)
add =P, 12 clean stack (3 arguments * 4
push 0 exit code
mov A Ozl system call number (sys_exit)
int 0xz30 Dkernel interrupt we do not return from sys exit there's no need to clean stack

The trap (system call interface) st very important for attack code because it 1s
POSITION INDEPENDENT! Your code 18 NOT LINKED with the runmng
program and therefore does not know where specific ibrary functions etc. are
located in your program. The kernel interface 1s always just there and can be used to
load Dynamic Link Libraries into the program.




Types of Buffer Overtlows

« Heap/BSS overflows
« Stack overtlows
« Data (re-)placing overflows

+ Instructions (re-)placing overflows

A rough distinction can be made according to WHERE the overflow happens (in
different memory regions e.g. heap, stack, data) and WHAT gets (over)written: data,
function pointers or instructions. Instructions can only be replaced when they are not
located in a read-only memory page.




Attack locations

Return address » Retumn address

(Old) base poimnter « (0Old) base pomter

Function pomnter as (local) » Function pointer as (local)
variable variable

Function pointer as (function) » Function pointer as parameter
parameter » longymp buffer as (local)
longymp bufter as (local) variable

variable * longymp buffer as function
longymp bufter as function param.

param.

From the iDefense paper on ,,a comparison of buffer overflow prevention...* (see
resources). The attacks are differentiated according to WHERE they happen (stack or
heap/bss) and whether they are DIRECT overflows or overflow a pointer leading to
the real target.




Dynamic memory,

higher address

Program Memory Areas

Stack

~

<

>
L]

Heap

int globalValue, /f uninitialized, goes in BSS
char * foo = _bar™, /f initialized, goes in data area
function dolt(int parameter) {/f parameter goes on stack
int somedrav[ 5], /' local variable on stack
string * charPointer = malloc(sizeofichan)®*100%; & on Heap

1 code goes in text area (usually read only at runtime)

Static memory,
lower address

Data

B55

Text (Code)

Please note that both stack and heap are dynamic. Heap grows upwards (caused by malloc()
or new ClassXX() statements) and stack grows downwards. If the meet then you are in
trouble. The tiny segment at the bottom of the virtual memory is called ..zero page* in some
systems and serves to catch mmnitialized pointer access. BSS content 1s usually initialized to
0 automatically at program start. Text 1s locked at program runtime to allow for pages
being thrown out in low memory conditions. All other areas need to be stored in swap
space if memory gets low because they may have changed during program runtime.




A data replacing overtlow

The value |0
upper memory addresses upper metnoty addresses hElS bEEﬂ

lI__,.--"
~ replaced by

[ 4
., 1. Perhaps
the code for

Over super-user
. Written 9

C statement:;

Buffer Buffer <_, Buffer
E B E
Eufter :

Eufter
A :> A

This kind of writing over data causes a program crash in most cases. A major problem
for attacker 1s the fact that the hole between buffer A and the ,,0* value needs to be

overwritten as well. Like the data placing case this one needs no attack code to be
started.




An address replacing overflow

upper memory addresses

Ox1234
Ox2233
Ox5785

0x958s
Ox2233
Ox5785

Eufter :

0z3080
Oxs080
Oxza0s0
Ox3080
Oxzals0
0z3080
Oxs080
Oxza0s0

C statement:;

strepy( A, B),

>

upper metnoty addresses

Ox9%988
Ox2233
Ox5789

Ox3080
OxB080
Oxza0s0
OxE030
Oz 0s0
OxzB080
OxB080
Oxza0s0

Ox9%988
Ox2233
Ox5789

Ox3080
OxB080
Oxza0s0
OxE030
Oz 0s0
OxzB080
OxB080
Oxza0s0

Only one
address has
"been changed.
Obviously
somebody
trying to
make a subtle
change to
program
functions.

Filler bytes are used to reach the critical address area. The overwritten memory could
hold a function jump table or the v-table of a ¢t++ class holding the addresses of virtual

methods.




A code-placing overflow

The buffer A
upper memory addresses upper metnoty addresses and some
"
~"| memory
behind have
- 011001 011001 011001 been filled
101010  statement: 101010 101010 with
111011 111011 111011
001000 : 001000 001000
strepy( A, B); executable
101010 101010 101010 code
111101 111101 Cj 111101 '
010101 010101 010101
Cj 001011 001011 001011
Buffer 010101 010101 010101
A 111001 :> 111001 111001
001001 001001 001001
111111 111111 111111
001010 001010 001010

This overflow is typically not an ,,accident™ but the result of an attack. What 1s still
migging is a way to start that attack code. The code itself has been carefully crafied to
avold ,,0* values in between which would cause the copy operation to break.
Sometimes even upper case or lower case values, newlines and carriage returns or byte

values beyond 0x7f are a problem — depending on the copy operation as we will see
later.




Stack smashing: place code and start 1t!

upper memaotry addresses of stack

011001
101010
111011
001000
101010

Oxla34

010101
111001
001001
111111
001010

beginn local /

Ox1234

buffer address

—>

>

ENVIroN
ment
vars

para
meter

return
address

frame
pointer

local

buffer

keginn local

butfer address

ENVIron
ment

011001
101010
111011
001000
101010

Ox1234

010101
111001
001001
111111
001010

Ox1234

upper memaotry addresses of stack

o return from the
called function the last
instruction of the
callee will be a  RET™
which pops the return
address from the stack
and puts 1t into the
instruction pointer
register. The IP points
now to the begin of the
attack code which gets
loaded.

On the left side the attack code gets copied into the local buffer on the stack. The code is
taylored to overwrite the return address (yvellow) with the address of the local buffer —
which now contains the attack code. The attack code could also be placed behind the
return address which would then be overwritten to point to a higher memory address.
This 1s the case when the place in the local buffer 1s too small to carry the attack code.




The stack smashing attack in slow-motion!

1)
2)
3)
4)
5)
6)
7)
8)
9)

CPU Registers

C language calling convention

Stack layout in detail

C strmgs and C copy/scan functions

Where does the attack code come from?

How does the attack code get in? C string functions etc.
How do you find those vulnerable bufters?

The ugly side of creating the attack code

stacks with nulls in the address: Finding helpers in the running
program

We will discuss these problems on the next shdes. You may be exposed to some
machine language! Please note that the stack 1s such an interesting attack place for
buffer overflow attacks because it COMBINES code placement with the ability to
start that attack code on return from a funtion (via RET).




A very simple CPU

Flags

=P EP P
A3 BX 5.4 D
EX FX )4 Hx

stackPointer (5F) points to the current stack address
EBasePointer (BP) points to the current call frame address

Instruction Pointer (IP) points to the address of the current
Instruction

Flag Eegister (Flags) hold the results of comparisons ete.

Eight general purpose registers. A — D2 are | scratch”™
registers — a callee can use them without saving them. If the
caller has something waluable in those registers, it needs to store
them some place (e g on the stack) EX-HX are callee’s
responsibility to save.

Our CPU 15 a 32 bit engine with little-endian byte order (like Intel and unlike
Motorola). Unlike Intel the instruction set 1s fully orthogonal: all commands and
addressing modes are available for all registers — no CS/DS index registers etc.

We run a small operating system on 1t where system calls use trap 0x80 (like linux)
to transfer call, parameters and control to the kernel.




C-function calling convention

upper memaotry addresses of stack

mainiint arge, char** argv) {
mt =2,

it k=1,

it b

b = add(i, k)

return address |

}
it add (intpl, intp2) |

mnttl =pl+p2;
return t1;

}

Claller:

push ax, bx, cx, dx (scratch registers) ffoptional

push p2 i push rightmost parameter on stack
pushpl i push left n parameter on stack
CALL add  /ftransfer control to ,_add™ address

pe

ol

return
address

callee’s BF

points here

frame
potnter

t1

W CALL pushes HIP on stack (address of next \
instruction after return) and moved instruction pointer
te _add location

A onreturn from  add: stack cleanup
pop pl
pop pe

pop ax, bx, cx, dx (scratch registers, optional)

ENVITOn
ment
vars

P

pl

return
address

Clallee:

push BP [(f save the callers frame pointer on stack

move SP, BP {f put current Stack pointer in Base
Fointer

move 1, --3F (put aute variable t1 on stack)

move (BP+2), ax /f put first parameter 1n ax

add (BP+32), ax  /f get second parameter, add to ax
incr =P ff increment stack, get rid of local variable
pop BE ff restore callers Base Pointer

EET [f ret pops return address into IP and jumps to

/7

after return to
caller:

it.

ENVIION
ment
vars

Pl




Calling convention rules:

« Caller saves ,scratch registers™ if they store something valuable: These

might be trashed by callee.

+ (Callee stores callers base pointer AND every non-scratch register IF
changed by callee.

« (Callee leaves the return value of the function m register ax where 1t

will be picked up by caller.

« At return callee leaves stack exactly as it was when caller performed
the call. BP 1s set to callers BP

* The Base Pomters (also called Frame Pomters) form a chain of

pomters on the stack, each pomnting to the previous callers Base
Pointer.

« Caller will then also clean up the stack (remove parameters, restore
scratch registers)

This 15 the so called ,,C-convention®. Others exist, e.g. Pascal convention where the
callee removes callers parameters from stack. Another alternative 1s to pass
parameters via memory registers or to omit the frame pointer. These special calling
conventions require that both caller and callee have been compiled with the same
optimizing compiler, otherwise they would not agree on register use etc.




Stack layout in detail

At the bottom of the stack (highest address) are environment
variables (put there by the process startup routine). After
those a chain of stack frames is created by functions calling
other functions. ,,main(argc, argv)* is NOT the first function
in a C-program. There are several startup and initialization
functions which come first.

The stack 1s typically in a separate address range (provided
that the System uses virtual memory addresses) than other
program areas (e.g. code).

When functions call other functions and so on, the stack can
grow considerably. The memory management system will
automatically grow the stack towards lower addresses by
allocating new memory pages.

Another reason why the stack grows is the use of automatic
variables which are allocated on the stack. In this example it
is only an integer but it could be a larger string array as well.
The advantage of stack variables is that they are allocated
much faster than heap variables and cleanup is easy: move
current BP to SP before returning to caller and all automatic
variables are gone (SP is now on stored BP)

funcAfpl) |
funcBipl) {

nttl;

HOME
FATH

ete.

pl

return
address

EP

frame
pointer

pl

return
address

EP

frame
potnter

t1

Per Proces:
environment
variables

stack grows
towards
lower
addresses




Overflowing a stack buffer with C

' functions that do unbounded reads:

ENVIron char buf [1024];
et : .
wars gets(buf); i reads from console until a newline or EOF comes!|
011001
101010
111011 para
O01000 reter C functions that do unkounded copy of format operations
1?1?;? return void storeCharacters{char * inputChars) {
010101 address char buf [1024],
001011 frame strepwibuf, inputChars), M copies all input characters into buf, no
?1?581 pointer matter how big inputChars really is.
001001 local
éé}:é}:é I:I> b;;uff;r Also tricky are formatted input functions like scanf’
char buf [1024],
sscanfiinputString, | %o0s”, &buf); [/ if inputString 15 bigger than buf an
overflow ocours

There 18 a large number of C-function which does unbounded operations. For buffer
overflow attacks the most interesting ones are those which manipulate strings or read
from I/O channels. NEVER use an unbounded read function like gets. NEVER assume
the size of input strings which have not been created within your own program.
NEVER accept a format string for scanXXX functions from outside your program)




Strings and string copying in C

char * string = ,,abc®™;

=

0x61|0x62|0x63|0

it MEetnory
representation
always includes a
tratling binary 0.

Strings in C are terminated by a binary ,,0. This 1s how C-functions recognize the end
of a string. There is no ,,String Clags® which would hold the length of a string in an
extra attribute. In C asking for the length of a string means applying the . strlen{)*
function which returns the length of the characters plus 1 for the trailing 0.

strepy(stackbuffer, attackcode)

|::> no 0 except last |0

An important consequence of the C-string handling for the attack code 1s that 1t cannot
contain binary zeros because in that case the strepy() function would terminate copying
from source (attack code) to destination (stack buffer) at the first 0!




Safe and unsafe string functions in C

Danger! Better:
* strepy « All functions that take an
* strcat additional length paramter to
o sprintf limit size: strnepy, strncat ete.
e scanf * Oruse an additional precision
e sscanf specifier:
e fucanf sscanf(buf, | %255s, &buf)
mstead of
+ viscanf
. sscanf(buf, | %s, &buf)
« vsprintf ... .. (see resources)

The general advice is to never make unbounded reads (e.g. gets()) or use external
buffers without checking their size with strlen() before and making sure that your
destination buffers are large enough to hold the copy. Question: This means you have to
ALWAYS check if a buffer s filled externally (e.g. getting environment variables)
AND that you have to check the SIZE with strlen(). The only difference to a generic
bounds checking implementation of strings 1s that you can opt to NOT PERFORM
THOSE CHECKS. A colleague later on may make a subtle change to the program and
your assumptions about a buffer turn out to be wrong. This is very typcial of C-
programs. We will see the same pattern with memory leaks later.




How does the attack code come 1n?

C-Progratn

— | fromkeyboard
Char buffer[40], / fized destination

farritten depends on input.

from environment variables

/ doRead{Device, buffer); /f how much gets

ooono

from networle

from configuration files etc.

TTzer value=

All this information comes from an external source into the program. If there 15 only a
fixed buffer to receive that data, the size of the data needs to be checked to avoid a
buffer overflow. Not even reading a programs own environment variables using getopt()
etc., 18 safe because those variables may have been fixed to contain extremely large

strings causing overflows. Or a users own default configuration file can be used to
overflow buffers (Netmeeting example)




Creating buffer overflow attack code

1) find vulnerable buffers

2) Try to find exact position of return address

3) Learn machine and OS architecture (e.g. memory areas)
4) Learn system call interface (traps) and basic functions.
5) Create new address to write over original return address
6) Create code for attack, load necessary library functions.

7) Allocate memory and download a remote control program (sub-
seven, back-orifice etc.)

These are the basic steps to create attack code. This is actually quite difficult as we
will see




Finding vulnerable buffers

= Inspect source code

Only possible with open source software. This
kind of software usually goes through many
hands and buffer overflow wulnerabilities get
fized rather quickly or even before shipping.

% C-binary Play around with the black box
\ _ / If vou don’t have source code you can either try
to dizazsemble the program or start feeding it
Path=

with all kinds of nonsense strings with regular
patterns.

value= 0x3080808080805080808080808080650508058080808080806505050808080808080

If the program crashes after reading the oversized input you have found a first hint at a
possible vulnerability. Look at error messages. If you find an Instruction Pointer
containming your pattern then you know that you have overwritten a return address! Bingo!
Now you need to find the position of the return address by making your dummy string
smaller until the program does no longer crash: now you are below the return address and
possibly also the base pointer.




Create a stack address pointing to your code

address pointing to stack
memory area (where
yvour attack code has
been put)

keginn of
your attack
code

Oxft0008

upper memaotry addresses of stack

ment

ENVIron

011001

111011

101010

001000
101010

D fF000

—

filler
bytes
and

MiPs

On return from
function call, the
return address will be
put into the Instruction
pointer register so the
next operation can be

fetched.

The problem here 1s that the stack segment (or area) may contain binary zeros! If a

strepy() function copies your attack code over the local stack buffer it would stop dead
as soon as the first binary zero 1s hit — thinking that the string ag at its end. Your code
would not be copied completely. 0xff00 would be represented as 0x00{f in memory and

therefore the last .. would not be copied and the faked return address would be

mcomplete.




0x101015

Use ,helper” in the attacked program

some piece of code in

the program that jumps
through the current SP

{put the current 5P into
IP and loads your first

attack instructions)

jnp through stack pointer

upper memaory addresses of stack (0000

keginn of
your attack
code

stack pointer (5B

(e

ENVIron
ment

011001
101010
111011
001000
101010

z101013

filler

bytes
and

HNCOPs

On return from
function call, the
return address will be
put into the Instruction
pointer register so the
next operation can be

fetched.

Because of the zeros in the stack address your attack code cannot overwrite the return
address directly with the stack address of vour code start location. But most programs
contain little routines to jump through the stack. You just delegate the return to such a
function which will jump to your first attack code mnstructions. Necessary zero values
i your code can be simulated by XOR instructions (e.g. XOR AX, AX puts a 0 in AX)




Leverage return-to-libc mechanism

the stack owverflow
directs execution not to
code on the stack but to a
regular function like
System{arg) which 13
patt of the standard
library. The proper
arouments must be on
the stack before ret iz
called

systemiarg);

upper memaotry addresses of stack (0000

argument to
systemmn
function

ENVIron
ment
vars

Jbindsh”®

potnter
tooarg

address
of
mystetm

filler

bytes
and

HNCOPs

on return from the
called function

Lavstem( Mbinfzh™) 1s

executed and the
attacker has a shell.

This attack 1s used if the stack segment is protected against execution of code.

34 /52



Make calls from your attack code

1) Understand the system call trap interface
2)  Find important library functions from DLL ‘s
3) Load DLLs and functions needed by your attack code




The kernal trap interface

your code wants to send a message msg to stdout:

push len message length
push msg .message to write
push 1 Jdile descriptor (stdout)
mow A, Oxd system call number (sys_ write)
int 0z&0) : kernel interrupt (trap)
add =P, 12 clean stack (3 arguments * 4
push 0 exit code
mov A Ozl system call number (sys_exit)
int 0xz30 Dkernel interrupt we do not return from sys exit there's no need to clean stack

The trap (system call interface) st very important for attack code because it 1s
POSITION INDEPENDENT! Your code 18 NOT LINKED with the runmng
program and therefore does not know where specific ibrary functions etc. are
located in your program. The kernel interface 1s always just there and can be used to
load Dynamic Link Libraries into the program.




Other interesting features of the C-language

« memory leaks

« pomter addressing

+ resource chasing

« optimizations: omit-frame-pointer

* no byte code verifier. ,,Private” etc. can be #undefined.
* bitwise const

« physical bmdings to addresses

See: The Development of the C Language, Denms M. Ritchie, Bell
Labs/Lucent Technologies,

http://cm.bell-labs.com/cm/cs/who/dmr/chist. htm]




Some last hints

+ Use a decent debugger (e.g. gdb)

« Create assembly code from C with cc —S filename.c and
inspect it.

« Use a good hex/octal viewer to understand byte ordering
problems (e.g. od —t x1 filename will display the content of
filename 1in hexadecimal. Use —t X2 to see the effects of
byte swapping due to endianism)




Protection Mechanisms against Overflows

« Kernel based:

— protect segments against executable code

— randomly re-arrange program parts m memory to confuse address
calculation mn attack code

— change stack to grow towards higher memory (makes arrays grow
away from return address). HP computers do this.

« Compiler based:

— msert magic values (canaries) and check their validity before
returning

— re-arrange variables, e.g. put arrays first after canary value

see the iDefense paper by Silberman/Johnson in resources.




Page Protection and Randomization

« Noexec:

— mark stack and bss pages as non-executable
— check mmap() calls to avoid creation of anonymous executable
pages in memory (makes pages either executable OR writeable)

« ASLR: (address space layout randomization)

— randomize location of kstack, ustack, mmap and elf binaries

A lot of the difficulties come from deficiencies in the Intel x86 architecture which
does not offer the proper protection bits. Instead, workaround with the TLB caching of
data vs. code are used to lock pages against executable code. Some program code 1s
broken by these measures, especially when code 18 generated at runtime.




Compiler Tricks with Canaries

' compiler places

guard/canary
arguments _
return address woid f@o(_i_tﬁ_ﬁrg}._._--_-'_"_'; —
saved base pointer (previous frame pointer) {
canary/guard ff do sotne processing
arrays retﬁfﬁf‘-ii - .

.---"--.___-_. ---"--______-I." 1 11

local wariables } compiler calls

function which

compares guard

against original

value stored in
data segment

Compiler protection tries to put all arrays right after the guard to avoid single variables
(or function pointers) to be overwritten. The guard is checked against a save version
stored somewhere else. Certain memory leak checkers also place markers behind
arrays on the heap to detect overwrites. Besides using special compiler options for
canaries one should ALWAYS use a good leak checker like purify to detect accidental
overwrites by the program itself.




Exception handlers tricked

upper memotry addresses

Eufter

zhandler

Dzattaclk

attacle
code

C statement:;

strepy( A, B),

>

upper metnoty addresses

/

Dxzattack

attacle
code

Only one
address has
"been changed.
Obviously
somebody
trying to
make a subtle
change to
program
functions.

OxHandler 1s the address of an exception handler which should be called in case of an
exception (e.g. canary overwritten). By replacing this address with our own address
we can direct execution flow to wherever we want. This 1s one of various ways the
windows stack protection in server 2003 was rendered useless. Creating an exception

1§ easy. (again from iDefense...)




Vista Security Mechanisms: Problems

1. Heap and stack protection via canaris and variable re-ordering. Secure
exceptions, secure list operations on heap: only when libraries are
compiled with GS option. And only for some variable types. Attack
code can still overwrite other variables on stack. 42% performance
loss when GS option used! (This 18 more than memory safe languages
cost!). Opt-in does not work.

2. Data Execution Protection (non-executable memory). Can cause
serious compatibility problems and is therefore only sparingly used.

3.  Adress Space Randomization. Many exceptions to randomization
defined. Start addresses for a library on windows must be the same for
all instances/applications! Many libraries cannot be randomized at all.
Heap spraying allows malicious code to be loaded into executable
regions (e.g. Java VM). Start addresses of libraries far from random.

Alexander Sotirov (VMWare)and Mark Dowd (IBM) at the Black Hat Conference in
August 2008 ,.Bypassing Browser Memory Protections — setting back browser secunty
by 10 years™




Combined Vista Security Attack

1. Use libraries which do not use heap/stack protection, which have

executable regions and which restrict possible start addresses of other
libraries considerably

2. Use the Internet Explorer‘s plug-in and extension mechanism as a
dynamic loader for libraries. Use heap-spraying to load attack code

3.  Use a known weakness to start the attack code

All the security exceptions and restrictions taken together undermine Vista security.
No new techmques are needed.




Memory Attacks against VM*s

Sudhakar Govindavajhala and Andrew W. Appel, Princeton
University July 2003: Using Memory Errors to attack a Virtual
Machme. Nice article on how to use (create) physical memory
damages and how one bit 1s enough to break Virtual Machine
type safety — and as a result of this memory safety. Arbitrary
memory locations can be written once 2 different object types
pomt to one memory location.
www.cs.princeton.edu/~sudhakar/talks/memerr. ppt and
http://www.cs.princeton.edu/~sudhakar/papers/memerr. pdf




The class definitions

class A { class B {
Aal: A Ell:,
. A a2
Aaz; ?
Bb: A a3;
int i A ad;
A 95 A a5,
i A ab;
A ab; A a7
AaT, a/
) }

// one instance / many instances

Object : 32 bytes, field : 4 bytes, header : 4 bytes. (from Govindavajhala...)




memory layout for VM type safety

Inviting to attack type safety.
— Segment size : Data >> text

Attack applet allocates a lot of memory
like this

Applet waits for a memory error

Random pomnter p.b dereference will
fetch from an A field.

Type safety violated

— Pointer of type B points to an A
object. But it can also be casted again
to an A object (runtime).

attack

B h

LT

=
=

A AR e e e

A

B he

i

| =5

i |

R Rl e el

A heac

=
-

i

AR

»5l= > [=]> >

B header

Rl R g e

U]

NN\ my,




B and A pointer to same object

before y el
MEmOry
tailure B pointer
some B object %
e
A pointer e .
A pointer . memery many B type instances:
A pointer .
_
A pointer A pointer
Ab :
N .
dereferenced ™ pointer
Al A pointer
A pointer
A pointer
A pointer
A pointer
A pointer

the single instance of type A

this field looks now like
| a B type object reference |

for the VM (A.b gives a
B). But in reality the
object reference at A.b 1s
an A type object. A
types have an int field
A which can be used to
change the object. B
type objects can only
reference (call) A
objects. What we have
now 1g two different
pointers to one object.




Exploit Code

class A { P class B {
Aal; ’ : Aal;
Aa?2; o Aal
B b Bog: A 33:,
]_'[‘11:13 int offset = 4 = 4; A a4
A El%' vold writei(int address, int wvalue) { A a5
A 36: p.i = address - aoffset ; A a6
Aﬂ?ﬁ g.a4.1 = value ; AEI,?:

) } }

p.1 sets the address of an object of type A. When this A reference 1s used with
a4 .1 the real access would be 1 — base of A. So this offset is subtracted first.

(from Govindavajhala... )




Resources (1)

Computer Architecture, John L. Hennessy, David A. Patterson. What you
always wanted to know... from the fathers of RISC cpu‘s.

Gary McGraw, John Viega on buffer overflows: (see also
www.1bm.com/developerworks and search for buffer overflow)

- learning the basics of buffer overflows: http://www-109.1bm.com/cgi-
bin/click.pl?url=http://www-
106.1bm.com/developerworks/library/overflows/index html&qry=buffer%200
verflow

- preventing buffer overflows http://www-109.1bm.com/cgi-
bin/click.pl?url=http://www-106.1bm.com/developerworks/library/buffer-
defend.html&gry=buffer%20overflow (Shows which ¢-funtions are dangerous
and how to substitute them)

- brass tacks and smash attacks: http://www-109.1bm.com/cgi-
bin/click.pl?url=http://www-

106.1bm.com/developerworks/library/smash. html&qry=buffer%20overflow
(this shows EXACTLY how it works)

- An anatomy of attack code: http://www-109.1bm.com/cgi-
bin/click.pl?url=http://www-
106.1bm.com/developerworks/library/attack html&qry=buffer%20overflow




Resources (2)

A comparative Analysis of Methods of Defense against Bufter
Overtlow Attacks, Istvan Simon,
www.mcs.csuhayward.edu/~simon/security/boflo.html

Libsafe: Protecting Critical Elements of Stacks, Arash Baratloo et.al,
www.bell-labs.com/org/11356/libsate. html

Jochen Liedtke, Uni Karlsruhe, System Architecture and Solution 1
(System Architecture Group). Nice stack layouts.

Sudhakar Govindavajhala and Andrew W. Appel, Princeton University
July 2003: Using Memory Errors to attack a Virtual Machine. Nice
article on how to use (create) physical memory damages and how one
bit 1s enough to break Virtual Machine type safety — and as a result of
this memory safety. Arbitrary memory locations can be written once 2
different object types point to one memory location.
www.cs.princeton.edu/~sudhakar/talks/memerr. ppt and
http://www.cs.princeton.edu/~sudhakar/papers/memerr.pdf




Resources (3)

Peter Silberman, Richard Johnson, A comparison of bufter overflow
prevention implementations and weaknesses. Excellent paper from
www.1detense.com on kemel and compiler technology to prevent the
execution of mjected code. On a simpler, OS specific level see also:

Oliver Lavery, Win32 message vulnerability redux — shatter attacks
remain a threat. Very nice paper from www.idefense.com on how to
exploit window messages on windows OS and why privileged services
running a GUI are dangerous (anyway, besides implementation flaws)

Solar-Designer explanation of return-to-libc mechanism.
www. groar.org/expl/intermediate/ret-libc txt

Mozilla.org vulnerability list. Allows analysis of kind and frequency of
certamn software problems causing security vulnerabilities.
http://www.mozilla. org/projects/security/known-vulnerabilities. html

Alexander Sotirov, Mark Dowd, ,.Bypassing Browser Memory
Protections — setting back browser security by 10 years®, Black Hat
Conference August 2008




