
Advanced Enterprise Portals

by Walter Kriha



Advanced Enterprise Portals
by Walter Kriha

Published 3 May 2001
Copyright © 2001 Walter Kriha

This paper lives at http://www.kriha.org/. If you're reading it somewhere else, you may not have the latest ver-
sion.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

http://www.kriha.org/




Table of Contents

Preface.............................................................................................................................................................
1Introduction...................................................................................................................................................

Purpose & Scope .......................................................................................................................... 1
2 What is an Advanced Enterprise Portal? ......................................................................................................

Definition ...................................................................................................................................... 3
Example ........................................................................................................................................ 3
Problems ....................................................................................................................................... 5

3 Portal Conceptual Model ..............................................................................................................................
Building Blocks ............................................................................................................................ 6
Model2 Architecture ..................................................................................................................... 6
Request processing ....................................................................................................................... 7

4Reliability......................................................................................................................................................
Simple page processing ................................................................................................................ 9

RAS properties .......................................................................................................... 10
Behavior in case of failures ....................................................................................... 10

Multi-Page (parallel) processing .................................................................................................. 11
Homepage-charts service ........................................................................................... 14
RAS properties without timeout ................................................................................ 14
Behavior in case of failures ....................................................................................... 15
RAS properties with timeout ..................................................................................... 16
Effect of caching on the scheduler ............................................................................ 17
A design flaw: ........................................................................................................... 18
Another design flaw .................................................................................................. 19

Multiple Multi-Pages .................................................................................................................... 19
Service Access and Reliability ..................................................................................................... 20

5Performance..................................................................................................................................................
Caching ......................................................................................................................................... 21

The end-to-end dynamics of Web page retrievals ..................................................... 21
Cache invalidation ..................................................................................................... 21
Information Architecture and Caching ...................................................................... 21
Client Side Caching ................................................................................................... 23
Results and problems with client side caching .......................................................... 23
Proxy Side Caching ................................................................................................... 25
(Image) Caching and Encryption .............................................................................. 25
Server Side Caching: why, what, where and how much? ......................................... 26

The reason for caching: Throughput ...................................................... 26
Caching: what ......................................................................................... 27
Caching: Where ...................................................................................... 28
Page Structure, Navigation Design and Performance ............................ 29
Caching: how much? .............................................................................. 30
Caching: how to? .................................................................................... 30

Cache implementations ............................................................................................. 31
Reference Data caching .......................................................................... 31
Domain object caching ........................................................................... 31

Physical Architecture Problems: Clones and Cache Synchronization ...................... 31
Solution One: A messaging system ........................................................ 32
Solution Two: CARP ............................................................................. 32

Portlets .......................................................................................................................................... 32
From Handlers to Portlets .......................................................................................... 32
Portlet: Application or Information? ......................................................................... 33

Fragments ..................................................................................................................................... 35
Fragment Definitions ................................................................................................. 35
Fragment Chaining .................................................................................................... 35
Composite Fragments ................................................................................................ 36



Fragment Sharing ...................................................................................................... 36
Fragment Validation .................................................................................................. 37
Fragment Architecture Overview .............................................................................. 37

Pooling .......................................................................................................................................... 39
Implementation .......................................................................................................... 39
Pooling: why, what and how much? ......................................................................... 39
Pooling: how? ............................................................................................................ 40

GUI design for speed .................................................................................................................... 41
Incremental page loading .............................................................................................................. 41
Information ordering ..................................................................................................................... 41
The big table problem ................................................................................................................... 41
Throughput ................................................................................................................................... 42

Java Pitfalls ................................................................................................................ 42
XML processing ........................................................................................................ 43
XML-RPC type communication performance .......................................................... 44
Database performance ............................................................................................... 45
Paging ........................................................................................................................ 46
Http Compression ...................................................................................................... 46
SSL Sessions and Acceleration ................................................................................. 47
Reader/Writer Locks ................................................................................................. 48
Http session handling in the Application Server ....................................................... 48

Asynchronous Processing ............................................................................................................. 48
Extreme Load Testing .................................................................................................................. 49

6PortalArchitecture ........................................................................................................................................
Domain Analysis .......................................................................................................................... 51

Information Architecture ........................................................................................... 52
Distribution Architecture ........................................................................................... 53

Service Access Layer ............................................................................. 53
Data Aggregation ................................................................ 53
Distribution Architecture .................................................... 54

Architecture Domains ................................................................................................ 55
System Architecture .................................................................................................. 56
Software Architecture ................................................................................................ 56
Physical Architecture ................................................................................................ 56

Infrastructure Problems .......................................................................... 56
Portal on a Web Cluster ......................................................................... 57
SSL Acceleration ................................................................................... 58
Physical Architecture Options ................................................................ 59
Distributed Caching ............................................................................... 59

7PortalMaintainability ...................................................................................................................................
Delegated Management ................................................................................................................ 63

What is "Delegated management services (DMS)"? ................................................. 63
Service Access Layer (SAL) ........................................................................................................ 63
Service Development Kit (SDK) .................................................................................................. 65

Dynamically loading a new service ........................................................................... 65
Necessary design changes in SEPortal ...................................................................... 65
Assessment ................................................................................................................ 66

Enterprise Portal: Can there only be ONE? .................................................................................. 66
One source-code base and only one installation of THE Enterprise portal. .............. 67
one source-code base, different installations and configurations. ............................. 69
different source-code bases and different installations ............................................. 70
Recommendation: SEPortal the template for smaller portals ................................... 72

8 Content Management Integration .................................................................................................................
Why use a CMS? .......................................................................................................................... 73
Architecture .................................................................................................................................. 73

9 Heterogeneous and Distributed Searching ....................................................................................................
The surface web and the deep web ............................................................................................... 75
Architecture .................................................................................................................................. 75



10 Mining the Web-House ...............................................................................................................................
The Portal as an information source ............................................................................................. 77
Architecture .................................................................................................................................. 78
Collecting data: logging and the role of meta-data ....................................................................... 79
Analytics ....................................................................................................................................... 79
How to flow the results back ........................................................................................................ 82
External Information Sources ....................................................................................................... 83

11PortalExtensions ........................................................................................................................................
Integrated Information .................................................................................................................. 86

Integrating heterogeneous databases ......................................................................... 86
Topics ........................................................................................................................ 86

Internet Conversation ................................................................................................................... 88
Forum ........................................................................................................................ 88
Instant Messaging ...................................................................................................... 88

Federated Portals? ......................................................................................................................... 88
12Personalization............................................................................................................................................

Customer Segmentation ................................................................................................................ 89
Design for change and exception .............................................................................. 90
GUI ............................................................................................................................ 90
Access Control .......................................................................................................... 91

Dynamic Segmentation ................................................................................................................. 91
The Profile Interface .................................................................................................. 93
The Access Controller Interface ................................................................................ 93
Rule Engine Integration ............................................................................................. 94

13Resources....................................................................................................................................................
References & Abbreviations ......................................................................................................... 95
Bibliography ................................................................................................................................. 95

A About the paper ............................................................................................................................................



List of Figures

2.1....................................................................................................................................................................3
2.2....................................................................................................................................................................3
2.3....................................................................................................................................................................4
2.4....................................................................................................................................................................5
3.1....................................................................................................................................................................6
3.2....................................................................................................................................................................6
4.1....................................................................................................................................................................9
4.2....................................................................................................................................................................11
4.3....................................................................................................................................................................12
4.4....................................................................................................................................................................15
5.1....................................................................................................................................................................21
5.2....................................................................................................................................................................22
5.3....................................................................................................................................................................28
5.4....................................................................................................................................................................33
5.5....................................................................................................................................................................36
5.6....................................................................................................................................................................37
5.7....................................................................................................................................................................37
5.8....................................................................................................................................................................42
5.9....................................................................................................................................................................47
5.10..................................................................................................................................................................49
6.1....................................................................................................................................................................51
6.2....................................................................................................................................................................51
6.3....................................................................................................................................................................52
6.4....................................................................................................................................................................53
6.5....................................................................................................................................................................54
6.6....................................................................................................................................................................55
6.7....................................................................................................................................................................56
6.8....................................................................................................................................................................57
6.9....................................................................................................................................................................58
6.10..................................................................................................................................................................59
6.11..................................................................................................................................................................60
6.12..................................................................................................................................................................61
6.13..................................................................................................................................................................61
7.1....................................................................................................................................................................63
7.2....................................................................................................................................................................64
7.3....................................................................................................................................................................66
7.4....................................................................................................................................................................67
7.5....................................................................................................................................................................69
7.6....................................................................................................................................................................70
8.1....................................................................................................................................................................74
9.1....................................................................................................................................................................75
9.2....................................................................................................................................................................75
10.1..................................................................................................................................................................76
10.2..................................................................................................................................................................77
10.3..................................................................................................................................................................78
10.4..................................................................................................................................................................79
10.5..................................................................................................................................................................80
10.6..................................................................................................................................................................81
10.7..................................................................................................................................................................82
10.8..................................................................................................................................................................83
10.9..................................................................................................................................................................84
11.1..................................................................................................................................................................86
11.2..................................................................................................................................................................87
12.1..................................................................................................................................................................89
12.2..................................................................................................................................................................90



12.3..................................................................................................................................................................91
12.4..................................................................................................................................................................92



List of Tables

5.1....................................................................................................................................................................
7.1....................................................................................................................................................................
7.2....................................................................................................................................................................
7.3....................................................................................................................................................................



List of Examples

1.1 A little hardware at Charles Schwab .......................................................................................................... 1
5.1 Lifecycle definitions for cachable information objects ............................................................................. 24
5.2 A pooling example: .................................................................................................................................... 40
5.3 Broken multithreaded version of "Double-Checked Locking" idiom ....................................................... 43
5.4 soapexample .............................................................................................................................................. 45
8.1 Authorization between portal and CMS .................................................................................................... 73
10.1 An artificial advisor ................................................................................................................................. 76



Dedication
Written against the end of a larger project, this paper contains many ideas from my friends with
whom I've been building this enterprise portal. I would like to say thanks to our project team

and to our project leaders

xi



Preface
This document describes the specific problems of a large scale high-volume portal site (in this case a
portal for a large international bank). By showing what is necessary to achieve a large scale high
speed portal - both in architecture as well as implementation - it questions whether this effort is jus-
tified for all portal needs. It is not an introduction to Enterprise Portals. It assumes working knowl-
edge of portals and associated technology.

• You should know the Java programming language reasonably well.

• You should know XML and backend access technologies.

• You know a Web Application Server like tomcat or IBM Websphere. The physical architecture
of Internet Applications (including DMZ) should be familiar - including load-balancing and
clustering

If you're just getting started the resources chapter contains links to a lot of publicly available papers
you might consider reading

xii



Chapter 1. Introduction
Just about a year ago in May 2000, AEPortal (Advanced Enterprise Portal) started as a typical web
project: Put a wrapper around some existing services, retrieve some existing data sources and hide
everything behind a common GUI. Clearly the functional requirements were the most important
ones at that time.

Based on a rudimentary framework (similiar to an early version of STRUTS from apache.org), mod-
eled roughly after the J2EE architecture the team started to write handlers, models and JSPs.

It looked like AEPortal would become an Enterprise Portal.

In the middle of October last year – when load tests and preparations for deployment started – the
non-functional requirements made a sudden and violent appearance and they continue to dominate
AEPortal till this very day.

Much has changed since then. AEPortal has been extended in many ways to cope with the non-
functional requirements – going far beyond a regular web application. This document describes the
portal specific aspects of AEPortal with a special focus on reliability, stability, performance and
throughput.

At the end organizational problems that had a major effect on AEPortal are described as well.

Purpose & Scope
As an enterprise portal AEPortal goes beyond a simple web application architecture. It relies on in-
ternal multithreading, read-ahead and does a massive amount of caching to concentrate a large num-
ber of external services onto a personalized homepage - while still being responsive.

Being a portal AEPortal needs to combine transactional features (e.g. Telebanking) with publishing
features (e.g. News). Right now it does a fairly good job on the transactional side but it is very weak
with respect to publishing. This needs to change quickly and the document tries to highlight the
problems and give hints on possible solutions.

This document also explains the technology used in AEPortal. It discusses critical aspects e.g. in
case of external service failures. These topics are not covered in the Infrastructure Architecture Doc-
ument. (24)

Caching plays a major role in AEPortal. Every site that delivers dynamic AND personalized content
has a severe performance problem currently solved or mediated through large hardware investments.

Example 1.1. A little hardware at Charles Schwab

A recently published paper on the portal architecture at Charles Schwab shows that IBM delivered
500! Multiprocessor Unix stations to run the personalized portal. Of course the fact that the portal
still runs CGA technology certainly accounts for a larger number of workstations - still - the num-
bers are frightening both financially and from a system management point of view

Caching of dynamic AND personalized content is both hard to do and an absolute must for such
sites. The overall architecture of a high-volume portal is more or less dominated by caching issues.
This document collects what AEPortal already does with respect to caching as well as what still
needs to be done.

Another goal of this document is to collect ideas from within the AEPortal team or our friends. So
please do not hesitate and add to it. There are still a lot of features missing that are vital for an enter-
prise scale portal (meta-information handling, search features, service development kit, maintain-

Chapter 1. Introduction

1



ability in production etc.)

Chapter 1. Introduction

2



Chapter 2. What is an Advanced Enterprise Portal?

Definition

Figure 2.1.

Example

Figure 2.2.

Chapter 2. What is an Advanced Enterprise Portal?

3



Figure 2.3.

Chapter 2. What is an Advanced Enterprise Portal?

4



Problems

Figure 2.4.

Chapter 2. What is an Advanced Enterprise Portal?

5



Chapter 3. Portal Conceptual Model

Building Blocks

Figure 3.1.

Model2 Architecture

Figure 3.2.

Chapter 3. Portal Conceptual Model

6



Request processing
To get a better understanding of what really happens during a page request (and as an anti-dote for
all the fancy sounding Java-isms) I found the following paragraph from Jon S. Stevens quite enlight-
ening: (Please replace "Turbine" with "AEPortal" – same stuff here).

The current encouragement that Turbine gives to developers is to do a mapping between one Screen
(Java) and one Template (WM or V). The way it works is that you build up a Context object that is
essentially a Hashtable that contains all of the data that is required to render a particular template.
Within the template, you refer to that data in order to format it for display. I will refer to this as the
"Push MVC Model." This IMHO is a perfectly acceptable, easy to understand and implement ap-
proach.

We have solved the problem of being able to display the data on a template without requiring the en-
gineer to make modifications to the Java code. In other words, you can modify the look and feel of
the overall website without the requirement of having a Java engineer present to make the changes.
This is a very good step forward. However, it has a shortcoming in that it makes it more difficult to
allow the template designer (ie: a non programmer) the ability to move information on a template
from one template to another template because it would require the logic in the Java code to be mod-
ified as well. For example, say you have a set of "wizard" type screens and you want to change the
order of execution of those screens or even the order of the fields on those screens. In order to do so,
you can't simply change the Next/Back links you need to also change the Java code.

So what does this mean for a JSP developer who wants to create a new view on some information?

1) Find out what handlers will create what pieces of information ("models" in AEPortal terms). Do
this by looking at the handler(s) code.

2) If you need pieces of information from several handlers, have someone create a handler that calls

Chapter 3. Portal Conceptual Model

7



all the needed handlers internally.

3) Go into the source code of the handler(s) and write down the keys used to store the pieces of in-
formation into the request hashtable.

4) Extract the information in the JSP.

This is a cumbersome and error-prone process and it requires programming skills at all levels. The
"re-use" of handlers creates subtle dependencies. There is NO definition of page content or informa-
tion.

The whole thing turned upside down would look like this:

"Instead of the developer telling the designer what Context names to use for each and every screen,
there is instead a set of a few objects available for the template designer to pick and choose from.
These objects will provide methods to access the underlying information either from the database or
from the previously submitted form information."

But this would require us to have a level beyond the (procedural) "handlers" where definitions of
pages and page content, fragments and parts of information exist. This in turn would allow us to
build editors even for dynamic and personalized pages.

But an even more important side-effect is that this architecture would support information fragments
much better. And fragments are the basic building blocks for caches and allow the caching even of
highly dynamic and personalized pages. This will be explained further down.

And last but not least: Andreas Kapp pointed me to another possibility: to not only cache those frag-
ments but to make them persistent too – on a per user basis. This means that the personalization de-
cisions are kind of frozen within a personal fragment and there is no need to always re-calculate the
filters, selections etc. permanently during each request. Only the content that really changed needs
to be filled in.

We will discuss the requirements of persistent, self-contained fragments in the chapter on fragments.

Chapter 3. Portal Conceptual Model

8



Chapter 4. Reliability

Simple page processing
The diagram below – taken from the Infrastructure Overview - shows the typical flow of control for
a simple page request in a J2EE Model 2 Architecture.

Figure 4.1.

1. POST/GET. The request is submitted from the client browser and arrives at the Controller
servlet. There is a single instance of the Controller servlet per web application. The Controller
multi-threads, processing multiple client request concurrently. All requests for the web applica-
tion arrive at the Controller.

2. Dispatch. The controller determines who the requesting user is, determines which page they are
requesting, sets up the necessary context and invokes the correct Handler to process that re-
quest.

3. Create/Update. There is typically one Business Logic Handler per page. The handler is respon-
sible for initiating the business operations requested by the user. Typically this will involve in-
teraction with backend systems to retrieve or modify some persistent state. When the process-
ing has completed, the Handler is responsible for creating or modifying State Data (the Model)
held in the Web Application to represent the results. The Handler then completes and control
passes back to the Controller.

4. Forward. The Controller will then determine which JSP to invoke to display the results. Nor-
mally the JSP is determined automatically based on the Requested page, however the Handler

Chapter 4. Reliability

9



may have over-ridden the default if it wishes.

5. Extract. The role of the JSP is to render the page as HTML. When the JSP needs to display ap-
plication data it extracts it directly from the State Data (Model) that has previously been setup
by the Handler.

6. Respond. When the JSP has finished rendering the page it is returned to the client browser for
display.§

Therefore, each page to be delivered to the client typically involves writing a triplet comprising: a
Handler to process the Business Logic; a Model to hold the result data; a JSP to display the results
back to the client.

AEPortal uses the JADE infrastructure to support the above process.

RAS properties

The processing of a simple page request has the following RAS properties:

• No additional threads created. Handler uses servlet thread

• During the request the AEPortal database is contacted (e.g. for profile information) and option-
ally an external service is accessed (e.g. to load a research document from a web-server

• Processing is sequential and response-time constrained: the handler cannot use wait times (e.g.
waiting for network responses) for other tasks

• If the handler is blocked, the whole request coming from the web container is blocked too. If the
maximum number of open connections is reached, no new request can enter AEPortal WHILE
the handler(s) are busy.

• No timeouts are specified for a handler. If timeouts happen they do so within the external service
access API.

• There is currently no external service access API that would offer a Quality-of-Service interface
e.g. to set timeouts or inquire the status of a service.

Behavior in case of failures

Let’s assume that an external service becomes unavailable. Eventually a handler waiting for this re-
source will get a timeout in the access API of that service and return with an error. This may take x
seconds to become effective. (We need to know more about timeouts in our access APIs).

While waiting for the external resource a handler will hold on to some system resources but at the
same time block an entry into the system. The effects on the system resources should be benign.

The user will have to wait until the timeout happens and the request returns. A different user with a
request to a different resource will not be affected but a user going after the same resource will see
the same delay while waiting for a timeout.

It would be an improvement for both system and user if we could tag a service as being unavailable
and not start any new requests against this service. But this raises a couple of questions:

• Who turns a service off? Is it the service itself? A handler?

Chapter 4. Reliability

10



• When is a service turned off? If it does not answer at all? If it is simply slower than usual? What
is too slow?

• When is a service turned on again? After a certain time or number of requests?

• Who can turn on a service again?

For now we need to make sure that the timeouts hidden in our access API’s are short enough to
avoid blocking too many requests too long.

Debug has shown some requests waiting 4 minutes or more e.g. on Quotes. This a severe system
drain and a bad user experience.

Multi-Page (parallel) processing

Figure 4.2.

The homepage of AEPortal is called a "Multi-Page" because it combines several otherwise indepen-
dent services on one page. Initially the internal processing of the homepage happened in the same
way as for any other page: a handler running on a server thread (i.e. the thread that comes from the
web container) collects the information and forwards the results to the view (via the controller).

It soon turned out that the AEPortal homepage had special requirements that were not easily met by
the standard page processing:

Chapter 4. Reliability

11



• Several external services needed to be contacted for one homepage request

• Large waits on external I/O

• Every additional homepage service added to the overall request time (= the sum of all individual
processing times)

• Rendering could not start until all services had finished. Frames were not allowed and therefore
no partial rendering possible. Users did see nothing while waiting for the whole page to com-
plete

• In case of a service failure (e.g. news) not only individual page requests for news would block –
almost every homepage would be affected too because news are a part of many personal home-
page configurations

• A simple page request blocking holds on to a small number of system resources. A homepage
request blocking would hold on to a much larger number of system resources – potentially caus-
ing large drops in available memory. (Something we have observed during Garbage Collection
debug)

While processing of multi-pages would have to be somewhat different there was a necessity to re-
use the existing handlers and handler architecture because of tight deadlines. This lead to the follow-
ing architecture:

Figure 4.3.

The processing steps 1 – 3 from above apply here as well. The homepage handler is a regular han-
dler like any other.

Chapter 4. Reliability

12



1. Using the servlet thread, the controller forwards the incoming request to the homepage Han-
dler.

2. Homepage handler reads profile information to select which services of the homepage need to
run for this user (access rights are of course respected as well)

3. Every service has a page description in ControllerConfig.xml telling the system about the nec-
essary access token, handler names and last but not least which data sources the service will
use. Depending on the data sources (available are: AEPortalDB, OTHERDB, HTTP) the han-
dler for this service will be put in one of two HandlerGroup objects: Handlers using only the
AEPortalDB are put in the synchronous handler group. Handlers using HTTP sources end up in
the asynchronous handler group.

4. Homepage handler calls start() on the asynchronous group first. It iterates over all available
handlers and starts every one with a thread from the AEPortal threadpool.

The behavior of the threadpool needs to be checked. Will every new request be put into a large
queue or will the requester block on adding to the queue if all threads are busy? This will affect sys-
tem behavior on a loaded system.

1. Then homepage handler calls start() on the synchronous group. Again it iterates over all avail-
able handlers but uses its own thread (which is the servlet thread) to execute the handlers se-
quentially.

2. After executing all handlers in the synchronous group homepage handler calls wait(timeout) on
the asynchronous group. The timeout is configurable (currently 30 seconds). When all handlers
are finished OR the timeout has happened, homepage handler returns back to Controller.

The assumptions behind these two groups are as follows:

• handlers in the synchronous group are both fast and reliable (because they only talk to the AE-
Portal database). They could run within their own threads as well but the overhead for the in-
creased thread context switches are not worth the effort. We see execution times of less than one
second for the whole synchronous group.

• The reasons for handlers to go into the asynchronous group are more diverse. The first and obvi-
ous reason is that the handlers experience large waiting times on I/O because they access e.g.
other web servers. By starting a request as soon as possible we can effectively run several in par-
allel. Doing so we avoid the overall homepage request time to be the sum of all single handler
times. Tests have shown significant savings here. To achieve this effect the wait() method would
not need a parameter timeout.

• The timeout parameter is available because external services not only cause I/O waiting times
but are also sometimes unreliable too. The assumption was that a full homepage request should
not have to wait for a single handler simply because its associated external service is very slow
or even unavailable. While this is a valid requirement the consequences of the timeout parameter
are much more complicated than initially thought. This will be discussed below.

• (Research, Telebanking and Charts are currently special cases. Research does NOT use HTTP
access for the homepage part but is currently fairly slow and is therefore in the asynchronous
group. This will change soon and it will move to the synchronous group. Telebanking is differ-
ent in development and production and it is currently not clear how fast and reliable access to its
external services will be in production. This is why it is in the asynchronous group even though
its runtime in development is only around 50 ms. The charts part of the homepage is worth an
extra paragraph below.

Chapter 4. Reliability

13



Homepage-charts service

Charts looks like a service that would need an external service (External Data System) for its pic-
tures – and it does so, just not within the charts homepage request.

The homepage request of charts uses the asynchronous requester capabilities of the AEPortal cache
and simply requests certain pictures to be downloaded from External Data System (if not yet in the
cache).

Charts Handler schedules the request synchronously but the request itself runs in its own thread in
the background, taking a thread from the AEPortal threadpool.

The homepage only contains the URLs of the requested images. During rendering of the homepage
the browser will request the images asynchronously by going through the AEPortal image handler.

The fact that charts causes a background thread to run is important in case of external system fail-
ure: what happens if the charts external service is down? Or under maintenance? Currently the back-
ground thread that is actually trying to download the image will get a timeout after a while and fin-
ish. In the meantime an image request from the browser will wait on the cache without a timeout.
What happens in case of a failure? Will there be a null object in the cache? Anyway – the image re-
quest blocking without timeout is not such a big problem because it runs on a servlet thread and
therefore blocks an entry channel into AEPortal at the same time – no danger of AEPortal getting
overrun.

The background thread of the asynchronous requester is more dangerous because a failure in an ex-
ternal service can lead to all threads of the threadpool being allocated for the cache loader.

Threads should NOT die and if they do the threadpool needs to generate a new one.

Failure behavior needs to cover maintenance periods of external services too, especially the single
point of failure we got through MADIS (news, quotes and charts all rely on MADIS)

Note: The image cache cannot get too large! Should the images be cached in the file system instead?

RAS properties without timeout

The processing of a multi-page request has the following RAS properties:

• Additional threads are used. Handler uses server thread to start the threads. At least one thread
must be available (possibly after waiting for it). A homepage request cannot work with a thread-
pool that does not have any threads and it cannot use the server thread instead (which would be
equivalent to putting all necessary handlers into the synchronous group). There are no means to
check for available threads in the threadpool.

• The size of the threadpool is still an open question. Testing has shown that an average homepage
request uses between two to four threads but his was before the introduction of the separate han-
dler groups. In addition to this the asynchronous requester capability of the cache (see below)
will need threads too.

• It is still an open question whether the threadpool should have an upper limit. One of the prob-
lems associated with no upper limit is that currently the threadpool does not shrink – it only
grows till the max. value is reached. The question of upper limits is much more difficult to an-
swer for the case of timeouts being used (see below)

• During the request the AEPortal database is contacted many times (e.g. for profile information)

Chapter 4. Reliability

14



and parallel to this external services are accessed. There is no common transaction context be-
tween the handlers.

• Processing is sequential as well as parallel: The best case would be if the runtime of the syn-
chronous block is equal to the runtime of the asynchronous handler group (which is started first).
Testing has shown that in many cases the external services are slower (by a factor of 2 – 5)

• A single slow service leads to a considerable system load since the other handlers have already
allocated a lot of memory.

• If one of the handlers involved blocks the whole request coming from the web container is
blocked. If the maximum number of open connections is reached, no new request can enter AE-
Portal WHILE the handler(s) are busy. This is also the case if one of the handlers in the asyn-
chronous group blocks because the homepage handler itself will wait for the whole group to fin-
ish (in case of no timeout set)

• No timeouts are specified for a handler. If timeouts happen they do so within the external service
access API.

• There is currently no external service access API that would offer a Quality-of-Service interface
e.g. to set timeouts or inquire the status of a service.

• The current policy for error messages is as follows: A failure in a service API should not make
the JSP crash because of null pointers. The JSP on the other hand cannot create a specific and
useful error message because it is not informed about service API problems. This is certainly
something that needs to be fixed in a re-design.

Behavior in case of failures

Again, just like the in the case of a simple page request, let’s assume that an external service be-
comes unavailable. Eventually a handler waiting for this resource will get a timeout in the access
API of that service and return with an error. This may take x seconds to become effective. (We need
to know more about timeouts in our access APIs).

While waiting for the external resource ALL HOMEPAGE HANDLERS that belong to one request
will hold on to some system resources. And so will ALL HOMEPAGE REQUESTS do which in-
clude this special handler. On top of that - three of the homepage services go to ONE external ser-
vice (MADIS) and all external services are subject to change (hopefully with an early enough warn-
ing to AEPortal). This means that a blocked homepage request has a much bigger impact on system
resources than a simple page request. Actually, without the ability to close down a specific service,
any interface change in an external service could bring AEPortal down easily.

And since the homepage is at the same time the most important als well as the first service after lo-
gin, a blocking service from the homepage is a critical condition that can quickly drain the system of
its memory resources.

Figure 4.4.

Chapter 4. Reliability

15



The good news: The request blocks an entry into the system (servlet engine) and prevents overrun.

The effects on the user are also different compared to a simple page request: If a simple request
hangs the user can always go back to the homepage and chose a different service. This is not possi-
ble if the homepage hangs. We do not offer horizontal navigation yet (going from one service di-
rectly to any other service). That means that with a blocking homepage a user gets NOTHING.
From an acceptance point of view a quick and reliable homepage is also a must.

The dire effects of a failure in a homepage service have led to the introduction of a timeout for waits
on the asynchronous service group. The requirements and consequences of a timeout will be dis-
cussed next.

RAS properties with timeout

After the things said above it should be clear that the external services make AEPortal very vulnera-
ble, especially the most important portal page. Before we dive into the implementation of timeouts a
speciality of the Infrastructure architecture needs to be explained: the relation between handler,
model and jsp.

Note: the "models" should really be result objects. The JSP should be a fairly simple render mecha-
nism that can ALWAYS rely on result objects to be present – even in case of service API errors.
Right now our JSPs are overloaded with error checking code.

Handlers create model objects. If a handler experiences a problem it can store an exception inside a
model object and make it accessible for the jsp. But what happens during a multi-page request? The
first thing to notice is that the Homepage jsp cannot expect to find a model object for every possible
homepage handler. The user may not have the rights for a certain service or has perhaps de-
configured it. In these cases the handlers do not run and therefore do not create model objects.

Chapter 4. Reliability

16



The introduction of a timeout while waiting for asynchronous handlers offers another chance for "no
model". A handler blocks on an external service but the homepage handlers times out and returns to
the controller and finally to the jsp. The handler did not create or store a model object yet. The only
way around this problem is that the homepage handler gathers statistics about the handlers from the
handlergroup and stores it in the Homepage-model. Now the jsp can learn about which handlers re-
turned successfully and which ones didn’t.

The implementation of a timeout is simple: the homepage handler calls waitForAll(timeout) on the
handler group and returns either because all handlers of the group signaled completion to the group
or because of the timeout. The consequences are much more difficult. What happens to the handler
that did not return on time? The answer is simple: Nothing. It is very important to understand that
the thread running the handler is not killed. Killing a thread in Java is deprecated and for a good rea-
son too. When a thread is killed all locks held by this thread are immediately released and if the
thread was just doing a critical operation on some objects state, the object might be left in an incon-
sistent state.

This has an interesting effect on system resources: The homepage handler will return and after ren-
dering the request will return back to the servlet engine and by doing so free an input connection
into the engine – WHILE THERE IS STILL A THREAD RUNNING ON BEHALF OF THIS RE-
QUEST WITHIN AEPortal. A new request can enter the system immediately, will probably hit the
same problem in the handler that timed out in the previous request and return – again leaving a
thread running within AEPortal. Of course, these threads will eventually time out on the service API
and return to the pool but on a busy system it could easily happen that we run out of threads for new
homepage requests (or even asynchronous requests on the cache)

Does it help to leave the upper bound of the threadpool open? Not really since requests could come
in so fast that we would exhaust any reasonable number of threads. And remember – we can’t shrink
this number afterwards.

Note: we have discussed an alternative: Wouldn’t it be better to crash the VM through an exploding
threadpool? In this case the websphere system management would re-start the application server!

If we could prevent the new request from running the problematic handler we could avoid losing an-
other thread. But this would require the functionality to disable and enable services.

Without being able to disable and enable services automatically (basically a problem detection algo-
rithm) a timeout does not really make sense. It is even dangerous if set too low.

Effect of caching on the scheduler

The handler threading mechanism was introduced at a time when many handlers used little or no
caching at all. It could be expected that every handler in the asynchronous group would have to go
out on the network and request data.

The membership in the asynchronous group therefore became a property of the handler – tagged
onto the page description. While this is easily changed by a change to the configuration file it still
presents a problem in case of advanced caching: If the data the handler has to collect is already in
the cache, the handler will return almost immediately. This is a waste of computing resources be-
cause the overhead of thread scheduling is bigger than the time spent in the handler to return the
CACHED data.

The homepage handler on the other side could not know in advance if e.g. the news handler will find
the requested data in the cache or not. It needs to start the news handler in its own thread (per con-
figuration) even if the news handler will run only 10 ms.

Why doesn’t the homepage Handler know which data the news handler will retrieve? Because there
is no description of those data available! The only instances that know about certain model objects

Chapter 4. Reliability

17



are handlers and their views. This makes caching and scheduling much harder.

A design flaw:

What looks like a little nuisance hides a much bigger design flaw in the portal architecture: The ar-
chitecture is procedure/request/transaction driven and not data/publishing driven:

• Without running a handler no results ("models") come to exist

• The results (models) do not survive a request

• Only the code within a handler knows what data ("models") will be created and where they will
stored (and how they will be called)

• A page does not have a definition of its content – quite the opposite is true: a handler defines im-
plicitly what a page really is. Example: the content of the homepage is defined as the set of han-
dlers that need to run to create certain data ("models")

• Handlers need to deal with caching issues directly and internally. No intermediate layer could
deal with cached data because nobody besides each specific handler knows which data should/
could be cached

• The framework maps GET and POST request into one request type – negating the different se-
mantics of both request types in http. There seem to be no rules within our team with respect to
the use of GET or POST.

We have already seen some of the consequences of this approach with respect to caching and
scheduling. But think about using the AEPortal engine behind a new access channel or just AEPor-
tal light. Whoever wants to extract information through AEPortal needs to know about handlers and
their internals (models). Instead of knowing about data and data fragments, clients need to call han-
dlers. Again, this architecture is good for transactional purposes but it is disastrous for publishing
purposes.

A few hints on a data-driven alternative:

1. A homepage request comes in.

2. The system retrieves the homepage description containing links to fragments.

3. The systems tries to retrieve the fragments from the caching layer, with the user context as a
parameter

4. If the cache contains the item in the version needed (we have personalized data!) it is returned
immediately.

5. If we have a cache miss, the proper requester turns around and gets a handler to retrieve the
data (synchronously or asynchronously)

6. The items returned are assembled and forwarded to the proper view.

This means for clients that they do not know about system internals. All they need to know is the
INFORMATION they want – not which handlers they have to call to retrieve an information set that
hopefully contains all the data they need.

Chapter 4. Reliability

18



We will discuss this some more in the chapter on caching, when we meet the problem of document
fragments.

For more information about this have a look at:

http://www.apache.org/turbine/pullmodel.html [http://www.apache.org/turbine/pullmodel.html]

Its focus is on GUI flexibility – UI designers cannot change the GUI without also changing the Java
based handlers that create the result objects - but the reasoning also applies to caching and frag-
ments.

Another design flaw

The current handler design did not force developers to separate different use-cases into different
handlers. A typical example is the authentication handler providing the rendering on behalf of the
authentication front-end. Different requests all end up in one handler – only distinguished by differ-
ent parameters. This has the following problems associated:

• It is hard to distinguish read-only from change operations

• Caching becomes very hard because the validator needs to know the different parameters of the
requests

• Access control no longer works on page/fragment level. It has to happen context sensitive within
the handler code – thereby depending on the developer.

The fragment based architecture described below needs to separate the different requests into clearly
distinguishable fragments.

The handlers need a more generic design allowing the configuration of e.g. a fragment handler by
specifying the service needed etc. This is e.g. done in the Portlet approach (Apache Jetspeed)

Multiple Multi-Pages
The issue of multiple multi-pages or homepages is caused by the simple fact that our current home-
page cannot grow endlessly – we could not delivery all those fragments in a reasonable time. Not to
mention that the whole page might become very confusing.

Technically the problem is not very hard to solve:

1. the homepage handler needs to be generalized into a multi-page handler. It looks at the re-
quested page name from RequestContext and retrieves the proper page description

2. HandlerGroup and derived synchronous and asynchronous handler groups would need to be
generalized a bit.

3. The page descriptions in the ControllerConfig.xml file need to be extended to allow page links
within page elements (in case a service appears in several multi-pages

4. A navigation scheme between the multi-pages would be necessary. But this would be the same
as for horizontal navigation needed anyway.

5. Some rules need to control the number and selection of services per multi-page

Chapter 4. Reliability

19

http://www.apache.org/turbine/pullmodel.html


Service Access and Reliability
The way external services were accessed proved to be the most influential factor for system reliabil-
ity. What was missing was a service API through which all access had to go and which would be a
major point for monitoring those external services. The chapter on portal architecture will show
what is needed.

• A Distribution Architecture defining the characteristics of external services (response time,
downtime etc.)

• A Service Access Layer that shields the portal from service problems and allows service mainte-
nance.

Chapter 4. Reliability

20



Chapter 5. Performance

Caching

The end-to-end dynamics of Web page retrievals

A large-scale web application needs to apply an end-to-end view on how pages are created and
served: client side and server side.

This covers issues like dynamic page creation, the structure of pages, compression and load-
balancing issues and goes from http headers settings over colors and page structure right down into
application architecture.

We will talk about the current settings for client side caching in our infrastructure shortly and then
move on to server side caching.

Cache invalidation

The biggest problem in caching dynamic and personalized data is cache invalidation. Client side
browser caches as well as intermediate proxy caches cannot be forced to invalidate an entry ON DE-
MAND. These caches either cache not at all or for a certain time only. The newer HTTP1.1 protocol
also allows them to re-validate a fragment by going to the server – driven by cache-control settings
for the page.

The result is that cache-control settings for browser and proxy caches need to be conservative.

Server side caches on the other side MUST HAVE AN INVALIDATION INTERFACE and possi-
bly also validator objects that decide about when and if a certain fragment needs to be invalidated.

Information Architecture and Caching

Figure 5.1.

Chapter 5. Performance

21



Tagging the portal information with respect to its lifetime is a necessity:

Figure 5.2.

Chapter 5. Performance

22



Client Side Caching

AEPortal being a personalized service our initial approach to client side caching was to simply turn
it off completely.

private static String sExpiresValue = "0";

private static String sCacheControlValue = "no-cache, no-store, max-age=0, s-maxage=0, must-
revalidate, proxy-revalidate"; // HTTP 1.1: do not cache nor store on proxy server. AKP

private static String sPragmaValue = "no-cache";

These values are currently set at the beginning of the service method of our controller servlet. They
are the same for all pages. It would not be hard to make them page specific – driven by a tag in our
ControllerConfig.xml. That’s what e.g. the struts package from Apache.org wants to do in the next
release.

We do not use a "validator", e.g. LAST_MODIFIED which means that clients will not ask us to val-
idate a request. Instead they will always pull down a fresh page.

We also do not use the servlet method getLastModified() which has the following use case:

It's a standard method from HttpServlet that a servlet can implement to return when its content last
changed. Servers traditionally use this information to support "Conditional GET" requests that max-
imize the usefulness of browser caches. When a client requests a page they've seen before and have
in the browser cache, the server can check the servlet's last modified time and (if the page hasn't
changed from the version in the browser cache) the server can return an SC_NOT_MODIFIED re-
sponse instead of sending the page again. See Chapter 3 of "Java Servlet Programming" for a de-
tailed description of this process.

Jason Hunter, http://www.servlets.com/soapbox/freecache.html
[http://www.servlets.com/soapbox/freecache.html]

A simple example that a personalized homepage need not exclude the use of client side caching:

If the decision to use the cached homepage can be based purely on the age of the homepage (e.g. 30
secs.) the getLastModified() would simply compare the creation time of the homepage (stored in
session?) with the current time.

This would help in all those re-size cases (Netscape). It would also decrease system load during nav-
igation (we don’t have a horizontal navigation yet).

Please note: We are talking the full, personalized homepage here. Further down in "client side
caching" we will also take the homepage apart – following an idea of Markus-A.Meier.

Results and problems with client side caching

First the controller servlet was changed to set the EXPIRES header and the MAX_AGE cache con-
trol value both to 20 seconds default per page. To enable the getLastModified() mechanism a valida-
tor (in our case LAST_MODIFIED) was set to the current time when a page was created. And get-
LastModified() returned currenttime-20000 by default. No explicit invalidation of pages was done.

Note: the controller servlet was modified in several ways:

It now implements the service method, overriding the one inherited from HttpServlet. I noticed that
this is the method that seems to call getLastModified() – allowing us to distinguish the case where

Chapter 5. Performance

23

http://www.servlets.com/soapbox/freecache.html


getLastModified() is called to set the modification time vs. it being called to test for expiration (see
J.Hunter)

It is unclear if overriding the service() method is actually a no-no.

The servlet now also implements the destroy() method – even if it only logs an error message be-
cause right now we are not able to re-start the application (servlet) without a re-start of the applica-
tion server. This is because we use static singletons. The destroy method should at least close the
threadpool and the reference data manager.

It is unclear under which circumstances the websphere container would really call destroy(). Could
our servlet and container experts please comment on this?

We did not set the MUST_VALIDATE header yet but some pages would probably benefit from do-
ing so.

Problems:

• the expiration time need not only depend on the page. Different users could possibly have a dif-
ferent QOS agreement for the same pages. Real-time quotes are a typical example. Either we use
different pages for those customers (could force us to use many different pages) or we can spec-
ify an array of expiration times per page

• After changing the homepage layout (myprofile), a stale homepage containing the old services
was served once to the user. We need to use MUST-VALIDATE and a better handling of the
getLastModified() method.

• We don’t know if business will authorize an expiration time of 20 seconds for every service.

• We don’t know how clients will use our site. (Our user interface and usability specialist Andy
Binggeli has long since requested user acceptance tests) and therefore we must guess usage pat-
terns, e.g. navigational patterns

Results:

• Three out of four homepage requests for one user came from the local browser cache

• Navigation between the homepage and single services was much quicker

• Browsers treat the "re-load" button differently, e.g. Opera requests an uncached page when the
re-load button is hit. Netscape needs a "shift + re-load" for this.

• Javascript files seem to get no caching, at least within our test-environment. This would mean a
major performance hit as some of them are around 60k big.

Note

Check on Javascript caching in production!

While client side caching will not affect our load tests (e.g. login, homepage, single-service, logout)
regular work with AEPortal would benefit a lot.

A possible extension of the page element that covers the content lifecycle could be like this:

Example 5.1. Lifecycle definitions for cachable information objects

Chapter 5. Performance

24



<!ELEMENT page (...,lifecycle ?,..) >
< !ATTLIST page

-- refer to a named lifecycle instance by idref (optional)--
lifeCycleRef idref #implied >
< !ELEMENT lifecycle (#empty) >
<!ATTLIST lifecycle

-- allows to refer to a certain lifecycle definition
name ID #implied

-- after x milliseconds the user agent should invalidate the page.
The system will assume a reasonable default if none given. A zero will
tell the user agent to NOT cache at all --
expires CDATA #implied

-- the user agent should ask server after expiration time --
askAfterExpiration (yes|no) yes

-- the user agent should ALWAYS ask for validation --
askAlways (true|false) false

-- the system will ask the given validator for validation during
a getLastModified() request OR when a validator (LAST_MODIFIED or
ETAG needs to be created. Allows pages to specialize this --
validator CDATA #implied >

-- experimental: what to do in case the backend is down: --
useCachedOnError (y|n) n >

Note

The lifecycle element is an architectural element. It is intended to be used in different con-
texts e.g. pages, page fragments etc. Therefore a lifecycle instance can have a name that
serves as an ID. Users of this instance can simply refer to it and "inherit" its values.

This does not prevent users from specifying their own lifecycle instance and STILL refer to another
one. In this case the users own instance will override the one that was referred to.

Proxy Side Caching

AEPortal includes a number of static images that should be served from the reverse proxies. The
same is true of our Javascript files.

Note: who in production will take care of that?

Further caching of information is a tricky topic because the information might be personalized. We
do not allow proxy side caching right now. But for some information it might be OK to use the pub-
lic cache-control header.

This chapter obviously needs a more careful treatment.

(Image) Caching and Encryption

"Encryption consumes significant CPU cycles and should only be used for confidential information;
many Web sites use encryption for nonessential information such as all the image files included in a
Web page" (23).

Is there a way to exclude images from encryption within an SSL session?

Can we cache encrypted objects (e.g. charts images, navigation buttons, small gifs, navigation bars,
logos etc.)? At least an expiration time and or validator would be necessary. What about Java

Chapter 5. Performance

25



Script?

BTW: I don’t think that the image handler (who writes the images directly to the servlet output
stream) does set any cache-control values that would allow client and/or proxy side caching.

BTW: how does socket-keep-alive work?

Which services (fragments) really need to be encrypted?

• SEPortal (Small Enterprise Portal) services

• telebanking

Server Side Caching: why, what, where and how much?

AEPortal currently uses a caching infrastructure that allows various QOS, e.g. asynchronous re-
quests. This infrastructure should be used for domain object caching needs. It can be found in the
package comaepinfrastructure.caching. For caching in other layers the following chapters suggest
some other techniques too.

The reason for caching: Throughput

The reason for caching is quite simple: Throughput (and in some cases availability). In some cases –
especially when dealing with personalized information - caching will speed up a single new but the
effect may not be considered worth the effort – e.g. because the single user case is already fast
enough. But on a large-scale site caching will allow us to serve a much larger number of requests
concurrently.

This is the reason why in many projects caching gets introduced at a late stage (once the throughput
problems are obvious). And it takes some arguing to convince everybody about its importance be-
cause it does not speed up a single personalized request as long as there is no clear distinction be-
tween global pieces, individual selections of global pieces and really individual pieces like e.g. a
greeting.

Note: The possibilities for caching are restricted by the application architecture. Caching requires a
decomposition of the information space along the dimensions time and personalization

The results from our load-tests are pretty clear: homepage requests are expensive. They allocate a lot
of resources and suffer from expensive and unreliable access of external services. And last but not
least we would like to avoid DOS attacks caused by simply pressing the re-load button of the
browser.

Sometimes caching can also improve availability e.g. if a backend service is temporarily unavailable
the system can still use cached data. This depends of course on the quality of the data and excludes
things like quotes. The opensymphony oscache module provides a tag library that includes such a
feature:

<cache:cache
<% try
Inside try block.
<%
// do regular processing here
<%
catch (Exception e)
>
// in case of a problem, use the cached version

Chapter 5. Performance

26



<cache:usecached />
<%
>
</cache:cache>
see Resources, Opensymphony

Caching: what

Our original thinking here was that most of our content is NOT cacheable because it is dynamic. A
closer inspection of our content revealed that a lot of it would actually be cacheable but this chance
has either been neglected or even prohibited by architectural problems.

• Missing assessment of information and content quality and caching possibilities

• Missing separation of server functions from page generation functions

Let’s look at some types of information and their behavior in case of caching: The difficulties for
caching algorithms increase from upper left to lower right.

Data / changed by Time Personalization

Country Codes No (not often, reference data) No

News Yes (aging only) No, but personal selections

Greeting No Yes

Message Yes (slowly aging) Yes

Stock quotes Yes (close to real-time) No, but personal selections

Homepage Yes (message numbers, quotes)

Question: how often?

Yes (greeting etc.)

Country codes are reference data. They rarely change. In AEPortal there is a separate caching mech-
anism (described below) that deals with reference data only.

All other kinds of data are either changed by time or through personalization and require a different
handling. The next best thing to reference data are data that change through time but are at least
GLOBAL. Examples are news and quotes which should differ by person (This does not mean that
everybody will get the same news)

A greeting (welcome message) does not change at all during a session but is highly personalized.
This reduces the impact of caching but does not make it unnecessary for a large site. Reading the
same message on every re-load from the DB does not cost a lot but with hundreds of users it is un-
necessary overhead.

The homepage is a pretty difficult case. Our initial approach was to not use caching at all because
the page was considered highly personalized and also contained near real-time data (quotes)

This was a mistake for the following reasons:

• Page reloads forced by navigation or browser re-size would cause a complete rebuild of the
homepage

Chapter 5. Performance

27



• According to a report from the yahoo-team (communications of the ACM, topic personalization)
80 % of all users do NOT customize their homepage. This would mean that besides the personal
greeting everything else would be standard on the homepage

• Even a very short delay for quotes data would save a lot of roundtrips to the backend service
MADIS. Right now we are going for EVERY STANDARD quotes request (i.e. the user did not
specify a personal quotes list) to the backend!

• The homepage could be cached in parts too (see below: partial caching)

Caching: Where

Let’s first draw a diagram of possible caching locations:

Figure 5.3.

An example for full-page caching is taken again from servlets.com:

Server Caching is Better

The problem with this use of getLastModified() is that the cache lives on the client side, so the per-
formance gain only occurs in the relatively rare case where a client hits Reload repeatedly. What we
really want is a server-side cache so that a servlet's output can be saved and sent from cache to dif-
ferent clients as long as the servlet's getLastModified() method says the output hasn't changed.

The existing code for a full page server side cache from Oreilly could easily be extended to support
caching of personalized pages. Page descriptions elements should get an additional qualifier to allow
this kind of caching.

Chapter 5. Performance

28



For a discussion of cache size see below (How Much?)

The full page caching approach suffers from a number of restrictions: While solving the re-load
problem (caused by quick navigation or browser re-sizing) it forces us to keep a separate homepage
per user. Also, the cache time will depend on the page part with the shortest aging time: we can’t
store the homepage for a longer period of time. 30 seconds seems to be the limit. And: if many users
do not change their settings or only a few, we keep many duplicates in those homepages.

These problems could be solved by using a partial caching strategy IN ADDITION or as a replace-
ment for the full page cache.

Partial page caching see: http://www.opensymphony.com/oscache/
[http://www.opensymphony.com/oscache/]

Dynamic content must often be executed in some form each request, but sometimes that content
doesn't change every request. Caching the whole page does not help because parts of the page
change every request. OSCache solves this problem by providing a means to cache sections of JSP
pages.

Error Tolerance - If one error occurs somewhere on your dynamic page, chances are the whole page
will be returned as an error, even if 95% of the page executed correctly. OSCache solves this prob-
lem by allowing you to serve the cached content in the event of an error, and then reporting the error
appropriately.

Currently we have a problem providing partial caching: We don’t have the infrastructure to support
it properly. Within AEPortal for every request a handler needs to run. This handler allocates re-
sources and creates the result-beans (models). These models are not cacheable (they store references
to request etc.). The homepage handler could be tweaked to supply cached model objects without
running the respective handlers but this would be a kludge.

If we had this functionality we could assemble homepages from standard parts (not changed by per-
sonalization) and personalized parts that cannot be cached at all or a longer time. The standard and
non-personalized parts would be updated asynchronously by the cache ( using the aging descrip-
tions).

Again, if the 80% rule (yahoo) is correct, this approach would increase throughput enormously. In a
first step we would probably cache only the non-personalized parts.

The Domain Object Cache already exists in AEPortal. It is currently used for pictures (charts), pro-
files and External Data SystemUser: a mixture of personalized and global data. This cache should
actually be a distributed one (see below: cloning)

Last but not least the diagram shows a special cache DB for MADIS on the right side. Here we
could cache and or automatically replicate frequently used MADIS data (or data from other slow or
unreliable external services)

Page Structure, Navigation Design and Performance

Results from Olympic game sites (Nagano etc.) indicate that navigation design has a major impact
on site performance. The 98’ Nagano site had a fairly crowded homepage compared to previous
sites. This was to avoid useless intermediate page requests and deep navigation paths (see Resources
6).

While the AEPortal homepage is already the place for most of the users interests the page structure
could be improved in various ways according to Andy Binggeli. Some of his ideas are:

• Separate the personal parts from default/standard parts. This is especially important for the wel-

Chapter 5. Performance

29

http://www.opensymphony.com/oscache/


come message. If the welcome message is the only personalized part in an otherwise unchanged
homepage we could past the unchanged part easily from a cache.

• Separate the quick database services from slow external access services. Flush every page part
as soon as possible

The proposed changes would NOT require us to use frames. But we would have to give up the sin-
gle large table layout approach and possibly create some horizontally layered tables.

Caching: how much?

A full-page cache that holds every page for every user for a whole session could become very large
and pose a performance and stability problem for the Java VM.

Some quick guestimates:

A homepage has an average size of 30 kb. Let’s assume 500 concurrent sessions per VM. Just
caching the homepage would cost us 15 Megabyte.

The partial caching of non-personalized homepage parts doesn’t cost a thing. For the personalized
parts we would access the domain layer and not the cache.

Domain object cache: This cache holds currently pictures for the charts service (global), profile in-
formation (per user) etc. The size of this cache is hard to estimate.

Currently we do not know how big our cache can become on a very busy clone. Critical objects are
images and other large entities. How do we prevent the cache from eating up all the memory?
Should we store e.g. the charts images in the file system?

Caching: how to?

Domain Object Cache:

Creating a new object cache is simple: A new factory class needs to be created by deriving from the
PrefetchCacheFactory and new requester class needs to derive from a request base class.

To allocate a resource from the cache a client either calls PrefetchCache.prefetch() or Prefetch-
Cache.fetch().

Prefetch is intended for requesting the resource asynchronously (i.e. the client does not wait for the
resource to be available in the cache). Fetch will – using the clients own thread – go out and get the
requested resource synchronously. The client might block in that case.

Both methods will first do a lookup in the cache and check if the resource is already there. And both
methods will put a new resource into the cache.

A quality of service interface allows clients to specify e.g. what should happen in case of a null ref-
erence being returned from the requester object (should it go into the cache? This could mean that
subsequent requests will always retrieve the null reference from the cache instead of creating a new
request that might return successfully)

Reference Data caching:

The package comaepinfrastructure.refdata contains the basic infrastructure for reference data han-
dling. A reference data manager (initialized during boot) reads a XML configuration file that de-
scribes what data need to be cached and also defines the QOS (aging, reload etc.). A new reference
data class can easily be created (probably in comaepAEPortal.refdata package) and a new definition

Chapter 5. Performance

30



added to RefdataConfigFile.xml

Note: There used to be different RefdataConfigFiles for production, test and development, due to the
long load times initially. This has been fixed and there is no longer a real reason for separate config-
urations. Basically everything is loaded during boot.

We need to clean up the configuration files!

If you need more information on reference data – go and bugger Ralf and Dmitri!

Cache implementations

Reference Data caching

An important part of a caching infrastructure is the quality of service it can provide to different
types of data. Some data are only allowed a certain amount of time in the cache. Others should not
be cached at all . Some should be pre-loaded, some can use lazy load techniques. Aging can be by
relative or absolute time. The currently available QOS for reference data caching are described in
the RefData dtd.

Domain object caching

OPEN

Physical Architecture Problems: Clones and Cache Synchroniza-
tion

The current cache solution has three problems:

• Performance

• Stale copies

• Cache Maintenance

All of them are related to the peculiarities of the current physical architecture, especially the exis-
tence of several clones per machine and the lack of session binding per clone.

Note: Websphere 3.2.2 provides session affinity per clone

In effect this means that a session can use two or more clones on one machine. Since there is a cache
per application or clone this in turn means that while one clone might have already cached a certain
data – if the next request goes to a different clone on the same machine, its cache again has to load
the requested data. Worst case, if we have n clones on a machine we can end up with loading the
same data n times onto this machine. This fights the purpose of caching and puts unnecessary loads
on network and database.

Besides being a performance issue this raises a much bigger problem: What happens with data that
are not read-only? Unavoidable we will end up with the same data having different values in differ-
ent caches. Currently we can only do two things about it:

Chapter 5. Performance

31



• believe IBM that most requests of a session will always go to the same clone (80% likelihood)

• decrease the re-load time (aging interval) of the cached objects (This is not even an absolute ag-
ing yet)

Note: the 80% have not been tested yet!

User access tokens and profile entries are the most likely candidates to cause problems here.

Cache maintenance is impossible too because we have no way to contact the individual clones. If we
could we could as well synchronize the caches in case of changes....

This has already hit us once: In case of a minor database change which requires the database to be
shut down and restarted there is a chance that id’s have changed. Without recycling the clones they
will have still the old values in the cache.

If we give up the idea of session affinity to ONE node – e.g. if we want to achieve a higher level of
fail-over, then we have the same problem between ALL nodes!

Inter-clone communication is a very important topic for the re-design. Websphere needs to provide a
mechanism here or cloning does not make sense in the longer run.

Solution One: A messaging system

In this case a change to the database would be sprayed to all clones – possibly using a topic based
publish/subscribe system and the clones would then update the data.

The Domain object cache on each clone or application instance would then need to subscribe for
each cache entry to get notification of changes.

On top of solving the cache synchronization problem this would also give us a means to inform run-
ning application instances about all kinds of changes (configuration changes, new software, database
updates etc.)

Solution Two: CARP

CARP (Cache Array Routing Protocol) could be used to connect the individual caches of all clones.

"CARP is a hashing mechanism which allows a cache to be added or removed from a cache array
without relocating more than a single cache’s share of objects. [..] CARP calculates a hash not only
for the keys referencing objects (e.g. URL’s) but also for the address of each cache. It then combines
key hash values with each address hash value using bitwise XOR (exclusive OR). The primary
owner for an object is the one resulting in the highest combined hash score." (15)

This solution would only provide a means to synchronize (actually, to avoid the synchronization
problem) several caches.

Portlets

From Handlers to Portlets

So far we have learned the following deficiencies of our model 2 architecture:

Chapter 5. Performance

32



• The concept of "services" is vague. Sometimes it means bits of the screen and sometimes it
means an application or backend data source.

• "Handlers" are a procedural concept and do not allow clever caching because the abstractions for
the things that would need caching do not exist (fragments)

"Portlets" were designed to better represent the aggregation of information within a portal page. The
next chapter shows that "Portlets" are still somehow vague – are they applications or information?
What kind of user experience and degree of information integration do they provide? What are the
essential differences to our handler based approach? And finally: are portlets enough?

Portlet: Application or Information?

At first glance portlets seem to represent pretty much the same "boxed" portal page concept as our
handlers above. An independent piece of screen real-estate is represented by an individual portlet.

Figure 5.4.

The following text from IBM gives (a lot) more definitions. I have highlighted the most important
bits: http://www-4.ibm.com/software/webservers/portal/portlet.html
[http://www-4.ibm.com/software/webservers/portal/portlet.html].

What is a Portlet?

"Portlets are the visible active components end users see within their portal pages. Similar to a win-
dow in a PC desktop, each portlet owns a portion of the browser or PDA screen where it displays re-
sults. Portlets can be as simple as your email or as complex as a sales forecast from a CRM applica-
tion.

Chapter 5. Performance

33

http://www-4.ibm.com/software/webservers/portal/portlet.html


From a user's view, a portlet is a content channel or application to which a user subscribes, adds to
their personal portal page, and configures to show personalized content.

From a content provider's view, a portlet is a means to make available their content

From a portal administrator's view, a portlet is a content container that can be registered with the
portal, so that users may subscribe to it.

From a portal's point of view, a portlet is a component rendered into one of its pages.

From a technical point of view, a portlet is a piece of code that runs on a portal server and provides
content to be embedded into portal pages. In the simplest terms, a portlet is a Java servlet that oper-
ates inside a portal.

Portlets are often small portions of applications. However, portlets do not replace an application's
numerous displays and transactions. Instead, a portlet is often used for occasional access to applica-
tion data or for high profile information that needs to be displayed next to crucial information from
other applications. In some cases, this is like an executive information system or a balanced score-
card key performance indicators display. In other cases, it may simply be a productivity enhance-
ment where a user can have all the tools and information needed to quickly access multiple appli-
cations, documents, and results. For example, a procurement analyst may want to see online vendor
product catalogs with prices side by side with current inventory levels from the ERP system, and
this next to a business intelligence analysis of item usage for the last 18 months. In any case, a port-
let provides a real time display of vital information based on the users preferences.

Portlets can be built by the Information technology department, systems integrators, independent
software vendors, and of course, IBM. Once a portlet is developed and tested, it is stored into the
portlet catalog. By browsing the portlet catalog, an end user can then select a portlet and place it into
one of their own portal pages."

To summarize, a portlet can be:

• a piece of code

• a container

• a piece of content

• an application

• a window

The definition mixes the results of processing (content) with the means of processing (code, applica-
tion, container). The difference is quite important: I cannot cache the code but I can cache results!

The main differences to the handler approach:

• A portal using portlets includes the infrastructure to dynamically add and delete portlets. In that
sense portlets have a better "handle" for maintenance.

• Portlets typically do their own rendering. The main window simply glues these bits and pieces
together.

Portlets seem to be the proper mechanism to create "Windows" or yahoo style portal pages combin-
ing independent pieces of information or applications for convenience reasons.

Chapter 5. Performance

34



They do NOT provide an infrastructure for sites that want to provide a much higher information in-
tegration level – in the sense of combining the information form various sources (applications, data
sources etc.) into an integrated information of higher value.

The portlet approach reflects the different information sources behind the enterprise portal, it does
NOT integrate them in the sense of integrated and linked CONTENT.

High performance sites would need a separate fragment caching layer for easy and quick assembly
of results without going through portlet processing. This layer needs to provide naming and address-
ing of result fragments.

Fragments
Fragments are a concept independent of base technology assumptions like J2EE or Apaches Jet-
speed etc. Fragments provide an information view on content and stay valid even if base technology
changes.

Fragment Definitions

Fragments are pieces of information that have an independent meaning and identity in the user’s
conceptual model. This can be a piece of news or research or a single quote.

Fragments can contain other fragments or references to those.

Fragments have names and identities and can be associated (via a catalog) with a system identifier
that allows the system to load or store a fragment through a specific service in a specific place.

Fragments can have one or more subjects associated. They can form a dependency chain of frag-
ments. If fragments lower in the chain change, the higher fragments need to be re-validated or up-
dated.

Fragments are the basic unit for caching.

Fragments can be persisted and have a read/write interface.

Fragment Chaining

Fragments appear in various formats. An example:

The subject "news service" of the homepage includes several fragments in one fragment chain.

• The database rows for all the news articles in the system.

• The Domain Object that may have already filtered some content from the DB

• An XML version of the same content

• A personalized (filtered, selected) XML version for user A

• A rendered version of the personalized XML version for user A

Chapter 5. Performance

35



Html XML(pers) XML(common) Domain Object Database Row(s)

The difference between these fragments is that various transformation processes have been applied.
A high-speed site needs to store fragments in various formats to avoid repeated and costly transfor-
mations. At the same time the site needs to guarantee the consistency of the subject e.g. the news
block in the homepage by invalidating all fragments in the chain.

Composite Fragments

A single page as well as a homepage can be composite fragments. Composite Fragments are de-
scribed by Fragment Definition Sets FDG (which are fragments as well that define what can/must
go into a certain fragment. The composite fragment contains complete sub-fragments or references
to other fragments).

The fragment definition sets form an object dependency graph (ODG). This graph is used to invali-
date fragments and fragment chains. The real invalidation needs to be performed by going through
the object dependency graph formed by the fragment instances themselves.

The lifetime of individual fragments can be very different and is defined either by the FDS or other
rules.

Figure 5.5.

Fragment Sharing

Every Fragment can be referenced from various other fragments. As long as a fragment is only ref-
erenced, an update of this fragment will immediately become effective. Derived fragments still have

Chapter 5. Performance

36



to be updated too if they somehow embed the sub-fragments content.

Figure 5.6.

Fragment Validation

Every Fragment has an associated Validator FV. This object will be contacted if a system compo-
nent needs to find out if a certain fragment is still valid. If the answer is no, the fragment itself
should be invalidated. In addition to this The fragment should know how to update itself – or at least
contain all the meta-information or configuration information to make this possible.

Fragment Architecture Overview

The diagram below gives an overview of the information flow in a portal. The explanation starts as
usual with an incoming request but there are certainly asynchronous information gathering processes
active at the same time (read-ahead etc.)

Figure 5.7.

Chapter 5. Performance

37



1. All incoming requests from various channel go through the channel access layer (CAL). This
layer does a normalization of the requests by creating a platform independent request/response
object pair.

2. The request object enters the aggregation layer (AL). It is the responsibility of this layer to map
the request to a certain fragment (a page or parts of it).

3. The first responsibility of the AL layer is to create a validator for the requested fragment. Using
this validator the layer can question cached information (e.g. a full-page rendered information
cache) whether the fragment is cached and still valid. If the fragment is still valid, AL layer re-
turns immediately.

Alternative: We could use Data Update Propagation (DUP) to notify caches about invalidation and
avoid the validator concept at this level. Validators would then only be necessary if something
changes and the scope of associated changes needs to be determined.

1. In case no suitable fragment was cached, a fragment definition instance for this user is then ei-
ther created (contact the profile information) or retrieved from a cache (with write through) The
fragment definition instance contains the fragment type information, filtered by the personal
settings and authorization information:

User X requests fragment "homepage". The type definition for the fragment homepage defines that
an instance of a homepage fragment can contain fragments of type "quotes" and "news". The access
control subsystem and the user profile contains the information that both fragments are active (not
minimized) and the "news" fragment has been personalized (topics, rows) while the quotes fragment
is the default quotes information (no personal selections, no GUI changes like more rows etc.)

Please note: if the fragment definition instance has been cached too, then the aggregation layer saves
the work to create a user specific fragment request!

Chapter 5. Performance

38



1. The fragment definition instance is now forwarded to the integration layer (IL). The integration
layer checks its caches for fragments needed to fulfill the request. The Ids of the fragments en-
code whether they denote personalized or common versions.

Best-case scenario is of course if the fragments all exist in the cache and are valid. (Do they even
exist if they are not valid?)

1. If a fragment does not exist in the IL cache, the fragment request is forwarded to the service ac-
cess layer (SAL) to retrieve the fragment. SAL will itself cache the raw domain data, the frag-
ment ends up in the IL fragment cache.

Please note: system information from catalogs map fragments to services. The fragment itself does
not contain that information. Aggregation and Integration only deal with fragments, not with ser-
vices (that will probably use something like a handler to retrieve fragments)

Pooling
AEPortal uses a pooling infrastructure that allows various QOS, e.g. aging by time or request count.
This infrastructure should be used for all pooling needs.

Note: Pooling is not the same as caching because cached objects need a unique name or id so that
clients can address them. This is not necessary for pooling. Still, both could probably be imple-
mented using the same base classes. This would be a topic for the re-design.

Implementation

AEPortal uses a generic object pool called "Minerva". Minerva is now part of the jboss open source
project (http://javatree.web.cern.ch/javatree) and does also advanced JDBC connection pooling
(JDBC SE, 2 phase commit support) but we only use the generic object pool. It is in the package
org.jboss.Minerva.pools. Infrastructure now has a package comaepinfrastructure.pooling which in-
cludes standard factories and a main pool factory. This package assumes right now a couple of de-
fault pools, e.g. DOMParserPool but new pools can be created programmatically. The process is
similar to the creation of new caches: You need a new factory with a method to create a specific ob-
ject and – optionally – have that object implement the PooledObject interface.

What is missing:

• a xml description of default pools so that the system can configure the pool factory at boot time
(like we do with reference data)

• a way to do the same at runtime from within applications or services (to make AEPortal dynami-
cally extensible)

• more quality of service features: aging by time and request.

Documentation: twiki, search for "ObjectPool".

Pooling: why, what and how much?

We pool things because we want to save either time – if it takes a lot of time to build an object – or
memory – if an object has a large footprint.

Chapter 5. Performance

39



The "what" part is harder to answer: Typically heavyweight objects that are not re-entrant because
they keep some state e.g. XML Parsers. Right now it is necessary to give two threads two XML
Parser instances because they might each install a different entity manager etc. There is only one re-
quirement: the pooled objects need to be "resettable", i.e. a new client thread (or the pool itself when
the object is returned) can return the object to its initial state.

Typically objects that get pooled are:

• threads

• database connections

• XML Parsers

• Network connections

Pooling: how?

Unlike caching pooling follows an allocate/free pattern. Objects that are not "freed" after use are no
longer available for other threads.

Sometimes it is hard to retrofit a piece of code with pooling because the moment where the pooled
resource needs to be returned to the pool cannot be determined.

Example 5.2. A pooling example:

// before pooling
Class ResourceUser {
Public ResourceUser () {
Resource mResource = new Resource(); // get a new instance
mResource.setSomeMode(x); // initialize it
}
Public useResource() {
String result = mResource.parse(foo);
}
}
Given this class, when would you return a pooled resource to the pool?

// with pooling
Class ResourceUser {
Public ResouceUser () {
}
private Resource getResource() {
Resource mResouce = (Resource) pool.getResource(); // get a pooled instance
mResource.setSomeMode(x); // initialize it
}
private void freeResource(Resource res) {
pool.releaseObject(res);
}
Public useResource() {
Resource res = getResource(); // get resource
String result = res.parse(foo); // use it
FreeResource(res); // return it immediately
}
}

Chapter 5. Performance

40



Note

You can no longer let objects of class PoolUser be collected by the Garbage Collector
without returning the pooled resource beforehand. The code is designed for short time us-
age of a resource. In the non-pooled version the resource is private to class PoolUser. This
is expensive but the good side of it is that this cannot create a bottleneck. In the pooled ver-
sion – if class PoolUser does not call freeResource() after every use – we have created a
bottleneck in the system. Of course, if class PoolUser would use the resource in a tight and
non-blocking loop, it would probably hold on to the one and avoid the pool management
overhead.

GUI design for speed
GUI design has both an subjective and objective impact on the speed of a portal. A subjective result
of GUI design is e.g. how the user experiences the load times for the homepage.

Incremental page loading
As we have seen the homepage processing is fairly intensive and will take a while. This leads to a
wait time of up to 20 seconds for a user - a number that is usually not acceptable according to the
usability literature (which talks about the magic 8 seconds after which a user leaves the page). While
this may not be true in case of enterprise portal - because users save a lot of time due to high service
and information integration (Single-Sign-On, aggregated reports etc.) the GUI design can neverthe-
less reduce the waiting time subjectively. The trick can be seen e.g. at sites like www.excite.com
and works like that:

• After 2-4 seconds excite shows a small page header containing static information.

• After 7-8 seconds excite shows a middle section showing dynamic information.

• After 16-19 seconds excite shows dynamic and personalized information and completes the
page.

The effect on the user experience is quite drastic: compared to a homepage that takes only 14 sec-
onds to display but does show nothing while loading the incremental load feels much faster even so
it is objectively longer. Go and try that - it really works.

Information ordering
To use this effect the GUI design can also have an objective impact on load time by ordering the
content in a way optimized for incremental load.

Gui Information ordering

In most cases this means to design the GUI to display static content on top of the page, then
to put dynamic but non-personalized content in the middle and reserve the bottom space
(the "longest" area) for dynamic and personalized information which takes presumably the
longest to collect on the server side.

The big table problem

Chapter 5. Performance

41



What prevents incremental loading technically is the use of one big table that embraces all the
homepage content. While this is nice from a layout point of view it prevents most browsers from
rendering those parts of the homepage that have been received already. Instead - the browser waits
for the closing table element (which is the end of the homepage html stream and can be around
50Kb later) to start rendering.

Figure 5.8.

Throughput
Much of this document has already been dealing with performance and throughput issues. Here I
would like to collect some more ideas from the AEPortal team on throughput or performance im-
provements

Java Pitfalls

Certain Java styles will have a very strong negative impact on system throughput:

• excessive object creation

• excessive Garbage Collection (caused by a lot of heap activity)

• thread context switching (especially with early JDK releases)

• exception throwing

Chapter 5. Performance

42



• excessive synchronization

In the end it was necessary to walk through Jack Shirazis book on Java performance to fix the worst
problems. It turned out that e.g. throwing and catching an exception is worth a couple of hundred
lines of Java code or up to 400 ms.

DO NOT USE EXCEPTIONS IN PERFORMANCE CRITICAL SECTIONS – EVEN IF IT IS
YOUR "STYLE"!

Excessive object creation and garbage collection can only be avoided using advanced caching and
pooling strategies and last but not least interface designs which avoid useless copy’s – this goes
deep into architecture.

The old saying: first get it going and optimize afterwards DOES NOT WORK HERE!

The latest garbage collectors work generational: they run through older data less frequently. This is
very good for large caches which would otherwise cause a lot of GC activity.

Excessive synchronization is very common. To prevent the framework classes in the critical perfor-
mance path are either singletons or have static methods.

Double-checked locking as a means to prevent multiple copies of a singleton and at the same time
avoiding the performance penalty of using "synchronized" DOES NOT WORK. There seems to be
NO workaround right now besides falling back to making the factory method synchronized or "ea-
ger initialization" (28).

The following is WRONG:

Example 5.3. Broken multithreaded version of "Double-Checked Locking"
idiom

class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null)
synchronized(this) {
if (helper == null)
helper = new Helper();
}
return helper;
}
// other functions and members...
}

XML processing

The parsing and or writing of XML documents or requests turned out to be quite expensive. The re-
cently created weakness-analysis already suggested to replace the DOMParser with a SAXParser.
While this would probably improve the performance and throughput, an even more powerful idea
was suggested: generate specialized parsers for certain DTDs. This technique has been successfully
applied in other projects [CMT99]. The specialized parsers are able to process the XML requests at
nearly I/O speed (e.g. like the Expat parser by J.Clark) with minimum memory footprint.

Note:

Chapter 5. Performance

43



When considering performance and scalability, the first concern with the DOM approach is the ef-
fect it has on system resources. Since DOM parsers load the entire XML document into memory, the
implementation must have the physical memory available for this task. This requires the application
to manage overflows as there's no real recourse for a document that's too large. Perhaps more impor-
tant is how this limitation impacts the support for the number of documents that can be opened in
parallel by the calling application. Since the DOM specification doesn't enable an implementation to
process the document in sections, this request can add significant overhead to the processing of mul-
tiple documents. Furthermore, current parser implementations are not reentrant; that is, they can't al-
low multiple data sets to be mapped against a single DOM held in memory. The upfront resource
costs of using the DOM approach are more than justified if the core function of the application is to
substantially or repeatedly modify the content or the structure of the document. In this case working
with the DOM allows efficient and reusable application calls that can interface directly with the
XML document. Procedurally, if the calling application requires this level of access to the entire
XML document or the ability to process different sections of the document, the use of the DOM API
may be warranted.

SAX Approach

While a DOM parser reads the entire document into a tree structure before allowing any processing,
an event-based parser allows the application to have a conversation with the XML document by
communicating events in response to invoked methods by the application's implemented handler.
Because of this conversational approach, the memory and initial processing requirements are lower
for an application processing a document using SAX. This resource efficiency, though, requires the
application to manage the various conversation handlers that are necessary to fully communicate
with an XML document. Managing these handlers becomes the responsibility of the calling applica-
tion. (from the XML Journal, http://www.sys-con.com/xml/archives/0203/patel/index.html)

A related problem is the mapping from XML elements to java classes (e.g. in External Data Sys-
tem). Class.forName("TagName") is VERY expensive within servlets. It uses the servlet classloader
which is very costly.

This mechanism is used e.g. in MarketDataSelectorImpl, NewsDataSelectorImpl and Result-
TagsImpl.

The same mechanism (but not for XML processing) is used extensively by the ProfileManager – an-
other reason to get rid of this component.

XML-RPC type communication performance

Communication with External Data System uses XML messages while e.g. Telebanking uses the
CORBA interface of External Data System.

The use of e.g. SOAP as a communication protocol underlying an rpc mechanism carries a perfor-
mance degradation factor of 10 compared to Java RMI. See "Requirements for and Evaluation of
RMI Protocols for Scientific Computing".

XML-RPC type communication is surprisingly fast for short messages. This shows that serializa-
tion/de-serialization is expensive, especially if an XML to object mapping is performed using Java
reflection. Specialized "PullParsers" could improve the performance quite a bit as well as avoiding
to convert too many XML elements into Java objects.

Does it pay to use a special parser for XML-rpc? From Graham Glass:

When my company decided to create a high performance SOAP engine, we started by examining
the existing XML parsers to see which would best suit our needs. To our surprise, we found that the
commercially available XML parsers were too slow to allow SOAP to perform as a practical re-
placement for technologies like CORBA and RMI. For example, parsing the SOAP message in List-

Chapter 5. Performance

44



ing 1 took one popular XML parser about 2.7 milliseconds.

Example 5.4. soap example

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getRate xmlns:ns1="urn:demo1:exchange"

SOAPENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
<country1
xsi:type="xsd:string">USA</country1>
<country2
xsi:type="xsd:string">japan</country2>
</ns1:getRate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope><SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getRate xmlns:ns1="urn:demo1:exchange"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
<country1
xsi:type="xsd:string">USA</country1>
<country2
xsi:type="xsd:string">japan</country2>
</ns1:getRate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Since a round-trip RPC message requires both the request and the response to be parsed, using this
popular parser would mean that a SOAP RPC call would generally take at least 5 milliseconds to
process, and that doesn't include the network time or the processing time on either side. This doesn't
sound too bad until you consider that a complete round-trip RPC message using RMI takes about 1
millisecond. So before giving up on ever building a SOAP engine that could compete against tradi-
tional technologies, we decided to experiment with building our own XML parser. (See
http://www.themindelectric.com/products/download/download.html for how to download Electric
XML, which developers may use without charge for most commercial and noncommercial uses.)
XML compression is also discussed in the context of XML-RPC: According to Gerd Mueller
(gerd@smb-tec.com ) the ozone/XML project uses "binary XML" to transfer XML from the clients
to the database server and back through a socket connection. It is based on some work of Stefano
Mazzocchi from Apache/Cocoon.

He called it 'XML compiler' and it compiles/compresses SAX events.

Database performance

Our database is currently NO bottleneck – I wish it were!

Why is our database no bottleneck? Simply because we spend less than a second in our database
driven services combined and several seconds in our services that access external sources like
MADIS.

Chapter 5. Performance

45



But once this problem is fixed THE DATABASE WILL BE OUR BIGGEST BOTTLENECK- con-
firmed by just about every paper on dynamic web content delivery (see Resources below).

And the reason for this is not bad DB design or large amounts of data transferred in single requests.
It is simply the huge number of requests per personalized homepage or regular page driven against
the DB.

I had a hard time to get everybody to recognize this. Especially if the amount of data in retrieved
was considered to be small. Or the DB was used for filtering. This is true for regular stand-alone
web applications. It does NOT apply for an enterprise portal that runs a lot of services in parallel
just to satisfy ONE client request!

The golden rules:

• If it don’t change – cache it!

• If it changes only every once in a while – use the cache automatic reload feature to retrieve it

• Don’t "abuse" the DB to get a convenient filtering mechanism – even so you could and should
do so in a regular application.

• If it’s personalized – still do cache it! The client might do re-loads.

• It it’s small and personalized – put it in session state (e.g. greeting)

Connection Hold Time: given the fact that the number of connections to a DB is limited for each ap-
plication server it is vital for the overall performance of the portal that requests do not hold on to a
DB connection for longer periods of time.

The calls to getConnection() and freeConnection() have been instrumented to record the hold time.
The architectural problem lies in the fact that proper system throughput depends on proper be-
haviour by the service developers and cannot be enforced by the system itself. Watch out for coding
patterns that allocate the DB connection and then let it flow through nested sub-routine calls. This
will typically result in overly long hold times.

The logging mechanism could be used to print warnings if a certain time limit is exceeded!

Paging

Currently we do not have framework support for selective and partial DB reads – e.g. caused by a
user paging through documents. JDBC2.0 provides support for this. Some of it has been backported
to JDBC1.0.

This is a hot topic within the servlet discussion groups.

Http Compression

Several packages are available that provide on the fly compression of http content (29, 17). Reduc-
tions in size of more than 90% are possible, reducing the download of e.g. the 50kb homepage sub-
stantially.

The basic requirement is that the browsers follow IETF ( Internet Engineering Task Force ) Content-
Encoding standards by putting

Chapter 5. Performance

46



"Accept-Encoding: gzip, compress"

in the http header.

Ideally compression should not happen at the application server. Reverse proxies seem to be a good
place to perform compression without putting further load on the application server(s).

SSL Sessions and Acceleration

SSL processing puts a heavy load on systems. Not all systems are well equipped to do key process-
ing at high speed (e.g. PCs outperform Sun Ultras by quite a margin).

Some numbers:

Depending on how many server requests are necessary to display a page the rendering time can
grow from 5 seconds (http) to 40 seconds or more (https) (33).

A standard Web server can handle only 1% to 10% of its normal load when processing secure SSL
sessions (34).

Note: KNOW YOUR PAGES! It is absolutely vital to know the structure of your pages and what it
means in http-terms, e.g. how many individual requests are necessary to build a page.

Note: KNOW YOUR SSL PERFORMANCE! It is absolutely vital to have proper performance data
on the throughput of your SSL processors (reverse proxies etc.). If the physical architecture seems to
always get bigger and bigger here you can assume that the architecture is based on guesswork.

The authors of (30) suggest the following architecture:

Figure 5.9.

Chapter 5. Performance

47



This architecture allows the sharing of SSL sessions e.g. for concurrent requests during embedded
image load or generally to achieve a better load-balancing. Without a shared SSL cache (e.g. a
shared memory session cache only) moving to a different web server would cause new SSL negotia-
tions.

Note: Currently there are no performance data available. The portal physical architecture now in-
cludes SUN E4500 with 8 GB Ram and 6 CPU’s to perform authentication and SSL management.
Also missing is the separation of static images from dynamically served content. Do the concurrent
requests for embedded images have to go through SSL or not?

Reader/Writer Locks

Using synchronized blocks for access to independently updated resources is very costly. The solu-
tion is to use Reader/Writer locks.

From Billy Newport (32):

"The reader writer locks have nothing to do with reading and writing actually. It is really a lock that
splits parties that need access to the resource in to two groups. Anyone from the first group can con-
currently access the resource. However, when someone from the second groups needs access, we
block everyone in the first group until we get access. So, the second group has priority over the first
group."

Http session handling in the Application Server

(37) suggests several ways to improve session performance:

• use the session cache of the application server

• optionally use manual session persistence. Architectural support for this has been built into the
portal already by protecting "UserState" with a dirty flag.

• Turn off automatic session creation from JSPs (if not needed or multi-framed JSPs are used)

• Run the IBMTrackerDebug servlet to test performance

Caveats:

Session sharing between servlets has consistency, classpath and performance problems (no multi-
row capability, servlets do not have class files for objects from other servlets, servlets need to de-
serialize many objects they don’t use. A multi-framed JSP cannot combine 2 Web Applications be-
cause they cannot read in the same session concurrently.??? Different web-applications used in one
JSP break session affinity. When application server security is enabled, all resources need to be ei-
ther secured or unsecured, no mix and match is possible.

Asynchronous Processing
The amount of processing that can happen during a time of a homepage request is limited. Process-
ing is much shorter if external requests can be avoided e.g. by having a daemon extract data asyn-
chronously.

Examples of asynchronous processing:

Chapter 5. Performance

48



• background replication between External Data System and AEPortal caching, driven by user
profile information

• splitting the homepage into several multi-pages, some of them are pre-loaded in the background

• starting an asynchronous requester during first access and – driven by profile values – fill in the
domain object cache.

• Use a Java Messaging System to request and publish data within the application and between
clones.

Extreme Load Testing
Most enterprise portals lack performance and or stability during the first couple of releases (e.g.
Deutsche Bank, yellowworld etc.) and AEPortal was no exception. Current project methodology
was not helpful here because it did not recognize the different needs of an enterprise portal:

• There is NO proven knowledge about how to build a large-scale enterprise portal

• Most of the current technologies are IMMATURE (Java, Web Application servers etc.) bug rid-
den or have low performance and stability (Java1.1 on multiprocessors etc.)

• Load-tests are no longer simple acceptance tests (spend a couple of weeks and put the check-
mark behind the milestone). The load-tests are needed to MAKE the portal perform – in other
words: they will cause a cycle of engineering and software changes over weeks and months.
There is no chance of an enterprise portal to support an open user group right from the begin-
ning.

Figure 5.10.

Chapter 5. Performance

49



• The load tests do not only cause software changes. In many cases they force the enterprise to re-
engineer some of its backend services because they do not scale in the context of the portal.
Project management needs to manage and track this process.

• The end-to-end environment is extremely complex and CANNOT be tested in one go with a
huge enterprise portal application. It is absolutely nonsense to start portal testing BEFORE every
component in the whole processing chain (from load-balancing and reverse proxies web server,
web application server(s), databases and backend service connections) has been tested INDI-
VIDUALLY.

Chapter 5. Performance

50



Chapter 6. Portal Architecture

Domain Analysis

Figure 6.1.

Figure 6.2.

Chapter 6. Portal Architecture

51



Information Architecture

Figure 6.3.

Chapter 6. Portal Architecture

52



Distribution Architecture

Service Access Layer

Data Aggregation

Figure 6.4.

Chapter 6. Portal Architecture

53



Distribution Architecture

Figure 6.5.

Chapter 6. Portal Architecture

54



Architecture Domains

Figure 6.6.

Chapter 6. Portal Architecture

55



System Architecture

Software Architecture

Physical Architecture

Vertical vs. Horizontal Scalability, high Availability

Infrastructure Problems

Figure 6.7.

Chapter 6. Portal Architecture

56



Portal on a Web Cluster

Figure 6.8.

Chapter 6. Portal Architecture

57



SSL Acceleration

Figure 6.9.

Chapter 6. Portal Architecture

58



Physical Architecture Options

Distributed Caching

Figure 6.10.

Chapter 6. Portal Architecture

59



Figure 6.11.

Chapter 6. Portal Architecture

60



Figure 6.12.

Figure 6.13.

Chapter 6. Portal Architecture

61



Chapter 6. Portal Architecture

62



Chapter 7. Portal Maintainability

Delegated Management

What is "Delegated management services (DMS)"?

From Netegrity’s Siteminder product overview: (36)

"Due to the complexity of distributed portal environments, portal administrators are challenged to
administer disparate users and groups of users across multiple organizations, partner and affiliate
sites. DMS establishes the distributed hierarchy portal administrators are in search of to ease admin-
istration complexities.

Portal administrators can now establish a super administrator who can delegate administration privi-
leges to distributed organizations and organization administrators. Super administrators can enable,
disable, modify and move users anywhere within the portal environment and are also able to create
organizations and organization administrators for internal departments or external partners and busi-
ness affiliates. Organization administrators can be granted full administration permission to enable
and disable users, and modify user attributes within the organizations they are responsible for or
they can be given more constrained access such as to only modify user attributes for example. It’s
left to the discretion of the portal administrator as to what permissions are granted to the organiza-
tion administrators. Users in all organizations can be given administration permission to modify all
or a select set of their user attributes. The particular set of attributes is left to the administrators man-
aging the organization the user belongs to.

DMS also provides event-driven workflow for pre-process and post-process administration and reg-
istration events. Shared workflow libraries can be developed and customized to support the work-
flow functionality required. Libraries can evaluate a pre-process request and govern whether to ac-
cept or reject it. If accepted, the request is carried out. If rejected, the request will not be carried out
and a pre-process error will be returned. After a DMS request is successfully processed, workflow
libraries evaluate the post-process request and take any action as dictated by the business process
and return success or fail status to the DMS application."

Service Access Layer (SAL)
Probably the biggest weakness of AEPortal currently lies in the missing SAL – both at the presenta-
tion side as well as when accessing backend services. A typical Service Access Layer composite De-
signPattern has recently been published by Oliver Vogel and it could be a starting point for the AE-
Portal re-design. (more to come)

Figure 7.1.

Chapter 7. Portal Maintainability

63



Figure 7.2.

Chapter 7. Portal Maintainability

64



Service Development Kit (SDK)
The ability to dynamically add new services without re-deploying the whole portal is an absolute
must for an enterprise portal – it is not so important for more specific portals like SEPortal.

What would be necessary to extend the current SEPortal code-base with such a feature?

Let’s discuss the cold spots after a quick look at how it could work!

Dynamically loading a new service

1. A department wants to offer a service on the AEPortal portal. They use the AEPortal SDK to
create a service package, consisting of java classes, service description, JSP files.

Part of the SDK are tools that use the Visual Age Java Tool API to create the necessary code frames,
helper classes and descriptions. (see Dmitris work)

1. The service package is loaded through the AEPortal service loader – itself a service running in
AEPortal

2. The service loader inspects the package, updates the AEPortal configurations with the package
description and adds the new java classes to the proper factories. The loader then copies the
new JSP files to their destinations.

3. The new service needs to get referenced from existing JSPs. But because these JSP build their
list of things to render now dynamically, the configuration changes made the new service refer-
ences immediately available.

Necessary design changes in SEPortal

The service loader mentioned above is not a design change – it is a new feature. Here I want to dis-
cuss real changes.

1. Configuration information can no longer be just files. It should be DB based. The system needs
to add to it dynamically

2. Besides configuration information, factories are the most import pieces of a dynamic system.
The SEPortal factories in Infrastructure are often static (the definition of the objects they can
serve are hardcoded). I would replace the Infrastructure factories (e.g. Entity Finder) with "intel-
ligent factories" from Apaches Turbine.

3. The fragment approach discussed above would force us to a more descriptive page building
process anyway and we would be able to assemble a page from fragments dynamically.

4. The implementation of authorization via static access tokens per role needs to change in order
to support dynamic extensions to existing user types and access tokens. A new service will gen-
erally require new access tokens for certain roles. The current design is flawed because it holds
all access tokens of a user in a table instead of constructing the access tokens dynamically e.g.
a stored procedure into a view.

Chapter 7. Portal Maintainability

65



Assessment

The efforts to build a SDK are considerable but not extreme. I guess we could have something run-
ning in 2 month (2 developers)

The question really is IFF we want to build it or use the packaging mechanisms of J2EE. Would
they be sufficient? Granular enough? Does it work already?

A prototype of the new and extensible access control framework already exists.

Enterprise Portal: Can there only be ONE?
Before we can decide on this we need to clarify the concept of "portal" a bit better. The one portal
approach can mean:

• a common source code base and a single instance of the portal runtime

• a common source code base and different instances of the portal runtime

• different source code bases and different instances of the portal runtime

At the beginning of the AEPortal portal project everybody was quite convinced that a single source
code base and runtime instance was the right approach. Services should not know about customer
segmentations (because this can change quickly).

THE LAST FIVE MONTH HAVE SHOWN THAT WE UNDERESTIMATED THE DIFFERENCES
IN ARCHITECTURE AND IMPLEMENTATION CAUSED BY THE DIFFERENCES IN NON-
FUNCTIONAL REQUIREMENTS.

•Is it clever to have only one instance of a Portal for a large Enterprise? (update problem, QOS for
special customers)

•What is the price of having only one code-base? (missed time to market, missed optimization,
missed functionality, missed opportunities)

While the conceptual model of a portal is quite simple, the non-functional requirements can lead to
many differences in architecture and implementation.

Figure 7.3.

Chapter 7. Portal Maintainability

66



The Portal conceptual model:

• Must contain the basic building blocks

• Real implementations need to specialize the conceptual model with respect to scalability (batch,
caching, SDK) or special requirements (rule engine)

One source-code base and only one installation of THE Enterprise
portal.

Figure 7.4.

Chapter 7. Portal Maintainability

67



Benefits Requirements

Standard coding practices Requires a module concept that al-
lows all departments to integrate
their parts

Common framework, re-use and ef-
ficiency

Requires a service development kit
supporting this

Robust and scalable services Requires implementations to sup-
port large scale and high-speed op-
eration

Integration of enterprise informa-
tion systems

Requires backend services to scale
enormously

Changes to backends (e.g. External
Data System) needed

Centralized operating Integration into operations infras-
tructure

Common services used
(authentication, authorization)

Integration into service infrastruc-
ture (authentication and authoriza-
tion services etc.)

Wait for those services to complete
and scale

Chapter 7. Portal Maintainability

68



Problems:

• Hard to guarantee Quality of Service for special customers

• Upgrades are hard and dangerous!!

• Upgrades to individual components are tied to general release plan!

My guess: It won’t work!

one source-code base, different installations and configurations.

Not much different from a) besides duplicated operating needs. The biggest benefit is that it is easier
to guarantee a certain quality of service for special customers and to make installations more flexi-
ble

Benefits Requirements

Different installations can be up-
graded independently

Need to deal with different releases.
Duplicated operating.

Figure 7.5.

Problems of the Retail Portal:

• Implementation must work on a much larger scale

Chapter 7. Portal Maintainability

69



• Implementation requires different architecture

• No rule engine (performance). Static template based rendering

• High-speed profile server necessary

• High-speed cache server necessary

The common code base would have to follow the retail portal requirements first - because of the
scalability problems.

different source-code bases and different installations

This list is easy to create: take the table from a) and put a NOT in the requirements column.

Benefits Requirements

Authorization, page integration etc.
will NOT be able to integrate ser-
vices from other departments auto-
matically

NOT: Requires a module concept
that allows all departments to inte-
grate their parts

No common framework, re-use and
efficiency.

NOT: Requires a service develop-
ment kit supporting this

Services scale to real need NOT: Requires implementations to
support large scale and high-speed
operation

No Integration of enterprise infor-
mation systems

NOT: Requires backend services to
scale enormously.

NOT: Changes to backends

NO Centralized operating,

Quick deployment!

NOT: Integration into operations in-
frastructure,

Common services used
(authentication, authorization)

NOT: Integration into service in-
frastructure (ESAUTH,BBS etc.)

NOT: wait for those to complete

But the integration can be an OP-
TION!

Figure 7.6.

Chapter 7. Portal Maintainability

70



Clearly alternative a) sounds the most attractive. It serves all the buzzwords of re-use, framework,
scalability etc. The only problem is that AEPortal/SEPortal might show that it simply does not work
and that it put EVERYBODY involved into a disadvantage!

Note: SEPortal is much later because of the integration into the large-scale site AEPortal. The
large-scale site AEPortal itself is later because some of the technology used for SEPortal does not
scale for AEPortal. The reason for this is simply the non-functional requirements which are very
different for both portals!

The SEPortal Portal can:

• Live with a simpler architecture because of fewer scalability problems

• Does not need SDK. Needs less caching and batch processing.

• Rule engine possible (fewer user). Advanced XSL based rendering, better integration and aggrega-
tion. In general, a small to medium scale portal can serve as a test-bed for new technology that
wouldn’t work right away on a large scale.

• No high-speed profile server necessary

• No high-speed cache server necessary

• Faster time to market.

• No need to change back-ends (MADIS etc.)

The Usability tests conducted recently may even force us to recognize fundamentally different user
behavior (e.g. much longer sessions for External Asset Manager and other specialists, a much higher
degree of customization for those expert groups).

Chapter 7. Portal Maintainability

71



Note: the Servlet API 2.1 introduced HttpSession.setMaxInactiveInterval(int interval). This MIGHT
allow a specific timeout PER session.

See: www.javaworld.com/javaworld/jw-12-1998/jw-12-servletapi_p.html
[http://www.javaworld.com/javaworld/jw-12-1998/jw-12-servletapi_p.html] (Jason Hunter)

Recommendation: SEPortal the template for smaller portals

With some improvements SEPortal could be the implementation base for many small to medium
portals in a large enterprise while the retail portal is developed using a new architecture supporting
large-scale use and extended backend services.

Chapter 7. Portal Maintainability

72

http://www.javaworld.com/javaworld/jw-12-1998/jw-12-servletapi_p.html


Chapter 8. Content Management Integration
The portal architecture as described above does not include a Content Management System (CMS)
yet. The reasons are two-fold:

• Integration problems (e.g. security, programming language)

• different skill sets (Java Programmers vs. Document People using scripts etc.

The first try to integrate a CMS ran into problems in the areas of security and programming lan-
guage. The goal was to use the CMS for "content type" things in the portal, e.g. FAQs and mes-
sages. Unfortunately the API of the CMS used Perl and the portal itself used Java. This was not the
only problem: The portal used instance based authorization while the CMS (especially the authoring
subsystem) used a type based authorization.

Example 8.1. Authorization between portal and CMS

Most CMS require every piece of content to have a "type", e.g. "message" with an associated
schema describing it. The authorization subsystem of the CMS can only associate either types with
roles or specific instances of types with roles. In the case of type based authorization every member
of a certain role gets access to all instances of a content type - not what a portal usually requires e.g.
if messages should be private between a client it ITS advisor. On top of this, authentication mecha-
nisms need to be compatible between portal and CMS as well.

Why use a CMS?
The experiences with a portal built on Application Server technology alone have shown that a CMS
has certain advantages:

• better handling of content fragments and caching. Caching needs to be built from scratch in an
application server based portal.

• a complete authoring environment for pure content (e.g. FAQ, messages)

• a permission based automatic workflow and release process allowing business users to control
the portal content to a certain degree. This is not possible in a JSP based personalized portal.

• a defined way to add meta-information to pages (later used to better mine site stats.

• a search facility

• usually also automatic separation of navigation and content, supported by tooling.

Architecture
Several possible ways to use a CMS for or within a portal come to mind. The first and most impor-
tant question is: who gets a request first - CMS or application server? And who assembles the results
into the firnal form? And how is the content coming from the application server represented in the
CMS (tooling etc.)? Does the application server deliver only presentation-less results, e.g XML
streams? Or do both, CMS and application server extract results in XML and then somebody assem-

Chapter 8. Content Management Integration

73



bles the results to a personalized page? This would circumvent the advanced caching capabilities of
the CMS.

Figure 8.1.

Chapter 8. Content Management Integration

74



Chapter 9. Heterogeneous and Distributed Searching
Because auf its dynamic nature a personalized portal that integrates applications and various back-
end services in realtime has its problems providing a top level search facility. Much of the discus-
sions in this chapter draws from an article on the future of internet search by Axel Uhl.

The surface web and the deep web
Uhl differentiates between static web pages (surface web) and dynamically generated pages
(sometimes within a session context) or dynamic queries (deep web). Regular search engines cannot
access content in the deep web, because the content returned from HTTP POST requests is not in-
dexable (it does not have a URL). This content grows at a frightening rate and is already now more
than 500 times bigger than what's available on the surface web. Uhl suggests applications to offer a
query interface that can be used by a search framework to map a top level query to different under-
lying applications and data sources. The keywords here are heterogeneous and distributed search.

From an enterprise portal point of view it would be nice being able to offer a) a top level global
search across all services b) a site directory, generated, that allows browsing type access to all infor-
mation

There is of course the problem of mapping a fragment based architecture to a search mechanism.
Here so called "topics" - kind of "canned queries" could offer a solution. But the biggest and still un-
solved problem is the definition of the information model for the portal.

A different problem is performance: In the chapters above we have shown how backend access af-
fects performance negatively. Offering a search mechanism can easily conflict with the approach of
minimizing backend access. So where does a top level search really work from? The performance
problem mirrors the one Uhl has diagnosed for internet search in general: a centralized index causes
bandwidth problems (content has to come to the search engine) and performance problems (the
query itself is not distributed to the sources and the sources cannot work on it concurrently). Last
but not least do we need a mechanism to cache query results (see the IBM Watson paper on this
topic).

Architecture
Uhl suggests an object oriented architecture with the following interfaces:

Figure 9.1.

This would result a portal search architecture:

Figure 9.2.

Chapter 9. Heterogeneous and Distributed Searching

75



Chapter 10. Mining the Web-House
This chapter totally reverses our point of view: from building a portal to sell services and products
to collecting information about customers during their visits. Both views are - and that is one of the
greater problems - highly connected: A portal is at the same time an offer (information, services or
products) and a measuring tool. But the measurements are again dependent on the content that is of-
fered by the portal - supposedly adjusted after the measurments have been analyzed and the results
have flown back into the portal. But the two roles of a portal are very different with respect to the
technology used and the persons involved: The "output" side is all real-time and driven by business
ideas. The input side needs much more time for analysis and is usually done by special analysts and
specialists for data-mining and data-warehouses.

Purpose

The purpose of this chapter is to clarify the why and how of integrating a data-warehouse
with the enterprise portal. Not to provide an introduction to data-warehouses or data-
mining in general. Examples of analytics run in the warehouse serve only the purpose to
define informations needed from the portal.

But before diving into the technicalities it pays to think about the reasons for the increasing interest
in "web-shouses".

Example 10.1. An artificial advisor

The banking business has always been service intensive. The banking personnel knew their cus-
tomers (this was actually the base of their credit business) and at the same time the personnel also
knew how the bank worked internally. They knew the applications and how to use them to extract
information for customers.

Figure 10.1.

Chapter 10. Mining the Web-House

76



Nowadays banks need to cut down on personnel costs and one way to do so is to provide their ser-
vices through a customer friendly (read personalized) portal. We can learn about the requirements of
such a portal from the functions that were traditionally provided by client advisors. These functions
can be split into two different areas: Learning information about the customer for input into the
banking systems. Using banking systems to extract, transform and aggregate information for the
customer. Both areas together form what business calls Customer Relationsship Management
(CRM)

The Portal as an information source
The information that can be collected through a portal is a direct result of what the portal provides in
its User Interface. Behavioral information (e.g. clickstream data about page impressions) but also
transaction information (e.g. orders) or information coming from collaborative services (e.g. forum
activity). Customization performed by a user typically are indicators of special interests (e.g. setting
filters for news or research). A search interface also provides information about interests.

Figure 10.2.

Chapter 10. Mining the Web-House

77



An important question in an enterprise portal is typically whether the users have to be authenticated
or not. In case of no authentication it is much harder to personalize a site during the progress of a
session because of the realtime requirements and the lack of information. Market-basket analysis in
supermarkets sometimes tries to deduce single customers from shopping sequences using e.g. "phe-
nomenal information".

Architecture
A rough sketch of a portal-warehouse connection:

Figure 10.3.

Chapter 10. Mining the Web-House

78



Collecting data: logging and the role of meta-data

Analytics

Figure 10.4.

Chapter 10. Mining the Web-House

79



Figure 10.5.

Chapter 10. Mining the Web-House

80



Figure 10.6.

Chapter 10. Mining the Web-House

81



How to flow the results back

Figure 10.7.

Chapter 10. Mining the Web-House

82



External Information Sources

Figure 10.8.

Chapter 10. Mining the Web-House

83



Figure 10.9.

Chapter 10. Mining the Web-House

84



Chapter 10. Mining the Web-House

85



Chapter 11. Portal Extensions

Integrated Information
big upcoming feature is Topics. These are basically canned queries, similar to "custom views" in
some email packages or saved searches from a search tool. In addition to storing Favorites, which
are just static links within a site, a member could have a customized topic that might be "Show all
NewsItems about the CMF that were posted in the last two weeks". This gets turned into an opti-
mized Catalog query that is always live. This is a powerful personalization feature, and proves even
more useful in some other Portal types described below.

Integrating heterogeneous databases

Combining Topic Maps and Holonomic Object technology Nan Kevin Gelhard, Summit Racing
Equipment, & Paul Prueitt, OntologyStream Heterogeneous databases can be integrated using topic
maps as the controlling interface and a Holonomic Object as generalized database. These two tech-
nologies are used together to connect a current commercial data and procedural environment to a
prototype B2B/B2C portal. The topic map is used as an "observational data warehouse" for legacy
databases, while Holonomic Object Technology provides fast, reliable transformations between
legacy databases and topic maps. Within highly ramified buyer/seller events, the portal answers
such questions as "What fits my need? Is it in stock? If not, when is it expected? What is the selling
price?"

Topics

Figure 11.1.

Chapter 11. Portal Extensions

86



Figure 11.2.

Chapter 11. Portal Extensions

87



Internet Conversation

Forum

Instant Messaging

Federated Portals?

Chapter 11. Portal Extensions

88



Chapter 12. Personalization

Customer Segmentation
One of the most important concepts of an Enterprise Portal is the definition of customers and their
segmentation. "Who sees what?" is defined by the segmentation which is usually defined by the
business - at least initially. The segmentation defines not only what can be seen or used by a specific
customer. It drives access control as well. In other words: Authorization information drives GUI and
access control and is itself driven by the customer segmentation.

Figure 12.1.

The problems with customer segmentation are as follows:

• Business likes to change the customer segmentation frequently as a result of changes in market-
ing strategy.

• TheGUI is affected by different segmentations

• Access control is affected by different segmentations

• Customer "types" easily end up being hard-coded

• A rule engine would let business change their definitions without changes in code

• How does one integrate a rule engine with a clean interface and without distributing calls to the
rule engine throughout the system?

Chapter 12. Personalization

89



• Dynamic segmentation needs to perform well. Hard to achieve with rule engines.

Design for change and exception

After the first discussions with business about the portal you will notice that there are few areas that
are more discussed than the way customers are categorized. In other words: customer types. The
only sensible conclusion coming from those discussion is that the portal needs to define customer
segmentation as a "hot spot", designed for change. A more subtle problem are exceptions to rules.
Many people like hierarchical, non-overlapping classifications. E.g. a tree of customer types each
with non-overlapping access rights. But this is "software" thinking - not business thinking. It should
always be possible to also cover the exception like "this is a customer of type A, thereforeshe has
rights 5,7,9 but in case it is Mrs.Doe she also gets right 12". In other words: make your customer
segmentation not strictly type based. Include instances as well. Do not force the system to create a
new type for the above case.

Equally important is the question what customer "type" really means. It is basically a set of rights or
properties - defined by business. Therefore, because it belongs to the business conceptual level
(domain) the "type" as a concept should not enter the lower levels of the portal system. What does
this mean? It simply means that you should not see code in the portal that asks for customer "types"
and derives knowledge from the type (see below: hard-coded types). The result will be portal ser-
vices that are not specific to certain customer segmentations.

GUI

In many cases business defines a different look and feel for different customers (besides the differ-
ent services available to them). During rendering of the personalized homepage, GUI classes or tem-
plates usually need to know certain things: the background color, an emotional picture etc. How
does a Java Server Page get this information?

One possibility is shown is the picture below: hard-coded type information is used to derive the
background color for a specific customer.

Figure 12.2.

Chapter 12. Personalization

90



Obviously this will lead to GUI changes in case the customer segmentation (or only the color as-
signments) changes.

Access Control

The same goes for access control: When a homepage request enters the system, the portal needs to
find out which services the customer is entitled to. It makes no sense to run services that will gener-
ate information the customer is not allowed to see. The above picture shows an implementation that
uses hard-coded customer types to assign access rights. Like in the GUI case this code is fragile.

Dynamic Segmentation
A better way to do customer segmentation is shown in the picture below:

Figure 12.3.

Chapter 12. Personalization

91



here the GUI asks a profile interface directly for the background color. It does not hard-code any
knowledge about segmentation - in fact, it has no concept of customer segmentation at all. The pro-
file interface (see below) offers a hierarchical name-value interface to clients, thereby hiding con-
crete implementations of the values behind its interface. Here we are using it to hide a rule engine
behind the profile interface. It is obvious how the GUI code has become independent of customer
type changes, but why would we want to hide the rule engine behind a profile interface? What's
wrong with just calling the rule engine e.g. engine.calculateBackgroundColor(user); ? This is what
we call a service interface: The rule engine works like a service and whoever needs something calls
one of its service methods. The downside of such a design - as work in the CORBA services has
shown -is that it is hard to change because of those service calls that get spread all over the place.
And on top of it: what if we need to replace the rule engine (at least for some results) because of
performance reasons? Hiding the engine behind a profile interface allows us to selectively calculate
results e.g. through hard-coded plug-ins instead of going to the rule engine.

Figure 12.4.

Chapter 12. Personalization

92



The Profile Interface

The profile construct should not be confused with what many portal packages call the customer pro-
file as a set of attributes in a customer table. Instead, it combines all kinds of customer related infor-
mation and hides it behind a hierarchical name-value based tree, not unlike a DOM tree. Its biggest
advantages are: It hides different data sources (e.g. some customer information coming from a
Lightweight Directory Service (LDAP) base, others from the local portal database). But on top of
that it allows customer information to be calculated dynamically either through a rule engine or
plug-ins. The users of the profile interface will not see the difference. The result is that certain busi-
ness concepts (like customer segmentation) can be restricted to the business rule level, expressed in
rules for the rule engine. Changes to the business logic are changes to rules and not to portal code.

The Access Controller Interface

Roughly modeled after the J2EE security model, our portal differs in one important aspect: A user
or principal may have several roles but these roles are only sets of so called access tokens. During
access control (e.g. when a request needs to be validated in the controller servlet) only the access
tokens are compared against what the service itself requires. A customers roles form the combined
set of access tokens for this customer. No service understands the roles themselves. The roles belong
to the business conceptual level.

This gives a lot of flexibility but requires an implementation that is both fast and maintainable. For
the first release of the portal it was decided to map the access tokens to tables in the portal database.
The combination of a users types into the set of access tokens was done through stored procedures
that created a dynamic view of the final access tokens per customer. A propagation logic propagated
new access tokens automatically to the view.

The AccessControler Interface allowed us to dynamically change the stored access tokens by asking
the rule engine, much like we do in the GUI case by asking the profile interface. The AccessCon-

Chapter 12. Personalization

93



troller Interface followed the design principle of "design for change and exception" by allowing
non-hierarchical and overlapping sets of access tokens. The price to pay was an extra table mapping
roles (types) to access tokens and a "non-defaults" table for those cases where individual users re-
ceived special access tokens without really changing roles or getting roles added.

A very important concept that we tried to implement was "service management delegation". The
ability for internal users to maintain the access rights for their parts of the portal. See: Maintainabil-
ity

Rule Engine Integration

Chapter 12. Personalization

94



Chapter 13. Resources

References & Abbreviations

DMZ De-Militarized Zone

DOM Document Object Model

DOM Parser A parser that reads a xml document an transforms it into a tree
of DOM nodes

DOS Attack Denial-Of-Service Attack

DTD Document Type Definition

EJB Enterprise Java Beans

J2EE Java 2 Enterprise Edition

JSP Java Server Pages

Thread Pool A pool of threads used internally

QOS Quality-Of-Service

RAS Reliability, Availability, Stability

RMI Remote Method Invocation

SAX Parser A xml parser that uses the SAX event based interface to com-
municate docuement content

WAS Websphere Application Server

XML Extended Markup Language

CMS Content Management System

EDS External Data System

Bibliography
Most of the literature mentioned below can be found on our WIKI server under "UseCachin-
gOnTheWeb" or "AggressiveCaching".

1. General hints and tips for web caching: UseCachingOnTheWeb

2. Information Resource Caching FAQ: http://ircache.net/Cache/FAQ

3. Dynamic Caching: A SpiderCache? flyer: www.spidercache.com

4. Class-based Cache Management for Dynamic Web Content: Discusses URL partitioning to e.g.

Chapter 13. Resources

95



invalidate classes of documents

5. Cooperative Caching of Dynamic Content on a Distributed Web Server (SWALA): Discusses
QOS of a distributed cache using the SWAL server

6. A Scalable and Higly Available System for Serving Dynamic Data at Frequently Accessed
Web Sites (The IBM architecture for the NAGANO Olympic Site). Discusses physical archi-
tecture as well as page design for performance: put a lot on the first page)

7. JSP caching: www.jspsmart.com/

8. www.servlets.com: server site caching example from Jason Hunter. Servlet interceptor for dy-
namic but non-personalized page PER servlet.

9. Exploiting result equivalence in caching dynamic web content: discusses mapping of several
URLs to one cached instance, e.g. mapping of map with many different locations to just a few
weather forecast pages (attached)

10. A Publishing System for Efficiently Creating Dynamic Web Content, IBM Research. Shows
the use of "fragments" and to speed up page creation and Object Dependency Graphs to secure
and minimize update requests.

11. Oliver Vogel, Service Abstraction Layer

12. Minerva: on twiki, search for "ObjectPool"

13. Opensymphony, Oscache. A tag library for jsp caching. :
http://www.opensymphony.com/oscache/ [http://www.opensymphony.com/oscache/]

14. Requirements for and Evaluation of RMI Protocols for Scientific Computing".
http://www.extreme.indiana.edu/soap/sc00/paper/index.html
[http://www.extreme.indiana.edu/soap/sc00/paper/index.html]

15. Design Alternatives for Scalable Web Server Accelerators (j.Song, et. Alii) IBM T.J.Watson
Research Center. Uses cache arrays with CARP for caching.

16. A Middleware System Which Intelligently Caches Query Results (Degenaro et. Alii, IBM Wat-
son). Explains the use of data update propagation (DUP) to keep caches current after database
updates.

17. Fineground Condenser Product Brief. Like packeteers.com a product that does browser detec-
tion and compression. http://www.fineground.com [http://www.fineground.com]

18. Open Markets Satellite Server. A frontend that delivers dynamic content by assembling it from
cached "pagelets" and stored meta-information about personalization. Used at ft.com, Europe’s
largest news site. http://www.openmarket.com [http://www.openmarket.com]

19. Times Ten In-Memory Database Technology. They claim to have a ten fold performance ad-
vantage over regular RDBMS for mostly-read scenarios

20. Building and Managing Dynamic Database-Driven Web Sites. A talk from a Seybold seminar.
Most important: to realize that using the typical JSP/J2EE push model (like AEPortal does) the
business users wont have a chance to EDIT the dynamic sites the way they are used to e.g. with
their static intranet sites). Without an information-centric "pull-model" dynamic content always
implies "programmed" content.

21. Caching Dynamic Content on the World Wide Web (Jim Starz). Shows the use of chains of
proxy servers and subscriptions to deliver dynamic content.

Chapter 13. Resources

96

http://www.opensymphony.com/oscache/
http://www.extreme.indiana.edu/soap/sc00/paper/index.html
http://www.fineground.com
http://www.openmarket.com


22. Einsatz von Java, XML und XSLT für grafische Oberflächen, Mike Mannion, Sven Ehrke.
Uses XSLT for request processing. Originally a part of the SBC Millenium Banking (later SSP)
effort). Mannion is now part of the MAP team and located in Hochstrasse 16. We need to dis-
cuss XSLT performance with him!!

23. Engineering Highly Accessed Web Sites for Performance, J.Challenger, A.Iyengar et. Alii.
IBM Watson

24. Infrastructure Architecture Overview,
http://columbia-test.sbcs.swissbank.com/twiki/pub/Pbit/JaDe/JADEOverview20.DOC
[http://columbia-test.sbcs.swissbank.com/twiki/pub/Pbit/JaDe/JADEOverview20.DOC]

25. Graham Glass, When less is more: a compact toolkit for parsing and manipulating XML
l=136,t=gr,p
=electricXM
http://www-106.ibm.com/developerworks/xml/library/x-elexml/index.html?open&L
[http://www.mindelectric.com]

26. SSL Accelerators see: http://www.kegel.com/ssl/hw.html [http://www.kegel.com/ssl/hw.html]

27. Java Performance Tuning (Java Series (O'Reilly)) -- by Jack Shirazi;

28. Problems of double checked locking:
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-toolbox_p.html
[http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-toolbox_p.html]

29. Http compression. www.RemoteCommunications.com/rctpd/rctpdfaq.html
[http://www.RemoteCommunications.com/rctpd/rctpdfaq.html] offers both a free and a com-
mercial version of a http compression software "proxy"

30. Speeding up the crypto: Apache e-Commerce Solutions (for ApacheCon 2000, Florida). Mark
J. Cox, Geoff Thorpe. www.awe.com/mark/apcon2000
[http://www.awe.com/mark/apcon2000], www.geoffthorpe.net/geoff/apcon2000
[http://www.geoffthorpe.net/geoff/apcon2000] describes the best SSL architecture with respect
to loadbalancing and performance. Suggests using a common SSL session cache and shared
crypto systems.

31. http://www-4.ibm.com/software/webservers/portal/portlet.html
[http://www-4.ibm.com/software/webservers/portal/portlet.html] describes what a portlet is –
from different points of view (user, technical etc.)

32. Implementing a Data Cache using Readers And Writers. Billy Newport,
http://www2.theserverside.com/resources/newport/ReaderWriter.html
[http://www2.theserverside.com/resources/newport/ReaderWriter.html]

33. When good security leads to poor performance, Mathias Thurman,
http://www.itworld.com/AppDev/1648/CWD010326STO58978/pfindex.html
[http://www.itworld.com/AppDev/1648/CWD010326STO58978/pfindex.html]

34. Optimizing SSL processing for Web, Greg Govatos,
http://www.itworld.com/AppDev/1684/NWW1023tech/pfindex.html
[http://www.itworld.com/AppDev/1684/NWW1023tech/pfindex.html]

35. Jenny Preece, Online Communities

36. Siteminder Overview, Netegrity. http://www.netegrity.com [http://www.netegrity.com]

37. Best Practices using Http sessions, IBM white paper,
http://www-106.ibm.com/developerworks/library/r-wsbest.html?n-dd-4191

Chapter 13. Resources

97

http://columbia-test.sbcs.swissbank.com/twiki/pub/Pbit/JaDe/JADEOverview20.DOC
http://www.mindelectric.com
http://www.mindelectric.com
http://www.mindelectric.com
http://www.mindelectric.com
http://www.mindelectric.com
http://www.kegel.com/ssl/hw.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-toolbox_p.html
http://www.RemoteCommunications.com/rctpd/rctpdfaq.html
http://www.awe.com/mark/apcon2000
http://www.geoffthorpe.net/geoff/apcon2000
http://www-4.ibm.com/software/webservers/portal/portlet.html
http://www2.theserverside.com/resources/newport/ReaderWriter.html
http://www.itworld.com/AppDev/1648/CWD010326STO58978/pfindex.html
http://www.itworld.com/AppDev/1684/NWW1023tech/pfindex.html
http://www.netegrity.com
http://www-106.ibm.com/developerworks/library/r-wsbest.html?n-dd-4191


[http://www-106.ibm.com/developerworks/library/r-wsbest.html?n-dd-4191] (pdf file)

38. The Future of Internet Search, Axel Uhl, Interactive Objects Software GmbH, Freiurg, Ger-
many http://www.io-software.com [http://www.io-software.com]

39. Vignette and the J2EE Application Server, Technical White Paper http://www.vignette.com
[http://www.vignette.com]

40. Schwab puts growth plan to the test,
ftp://vadd1:3fzwbti2\@207.25.253.53/1/wsdd/pdf/Schwab2001.pdf
[ftp://vadd1:3fzwbti2\@207.25.253.53/1/wsdd/pdf/Schwab2001.pdf]

41. CMF Dogbowl, Jeffrey P Shell's Member Page. Describes different portals and how a CMS
will support them. Explains "topics".
http://cmf.zope.org/CMF//Members/jshell/PortalDesigns.txt
[http://cmf.zope.org/CMF//Members/jshell/PortalDesigns.txt]

42. Katherine C.Adams, Extracting Knowledge
http://www.intelligentkm.com/feature/010507/feat.shtml
[http://www.intelligentkm.com/feature/010507/feat.shmtl]

43. Dan Sullyvan, Beyond The Numbers http://www.intelligententerprise.com/000410/feat2.shtml
[http://www.intelligententerprise.com/000410/feat2.shtml]

44. Communications of the ACM, August 2000/Vol.43 Nr. 8

45. Information Discovery, A Characterization of Data Mining Technologies and Process
http://www.datamining.com/dm-tech.htm [http://www.datamining.com/dm-tech.htm]

46. Dan R.Greening, Data Mining on the Web
http://www.webtechniques.com/archives/2000/01/greening.html
[http://www.webtechniques.com/archives/2000/01/greening.html]

Chapter 13. Resources

98

http://www.io-software.com
http://www.vignette.com
http://cmf.zope.org/CMF//Members/jshell/PortalDesigns.txt
http://www.intelligentkm.com/feature/010507/feat.shmtl
http://www.intelligententerprise.com/000410/feat2.shtml
http://www.datamining.com/dm-tech.htm
http://www.webtechniques.com/archives/2000/01/greening.html


Appendix A. About the paper
This paper was written in DocBook XML [http://www.oasis-open.org/docbook/] using Emacs
[http://www.gnu.org/software/emacs/], and converted to HTML using the SAXON XSLT processor
from Michael Kay of ICL [http://users.iclway.co.uk/mhkay/saxon/] with a customized version of
Norman Walsh's XSL stylesheets [http://www.nwalsh.com/xsl/]. From there, it was converted to
PDF using HTMLDoc [http://www.easysw.com/htmldoc/], and to plain text using w3m
[http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/]

It simply copies the physical layout (entity structure) of the "Dive Into Python" book

If you're interested in learning more about DocBook for technical writing, you should read the
canonical book, DocBook: The Definitive Guide [http://www.docbook.org/]. If you're going to do
any serious writing in DocBook, I would recommend subscribing to the DocBook mailing lists
[http://lists.oasis-open.org/archives/].

Appendix A. About the paper

99

http://www.oasis-open.org/docbook/
http://www.oasis-open.org/docbook/
http://www.gnu.org/software/emacs/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://users.iclway.co.uk/mhkay/saxon/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.nwalsh.com/xsl/
http://www.easysw.com/htmldoc/
http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://www.docbook.org/
http://lists.oasis-open.org/archives/
http://lists.oasis-open.org/archives/
http://lists.oasis-open.org/archives/

