Seminar on

J2EE Patterns

SApplication and System Level Patterns™

Walter Kriha

Goals

* Learn application level patterns like value objects, composite entity etc. to
avoid performance problems

» Take a look at how J2EE itself can be extended e.g. through the
Connector Architecture

The application level patterns are also called .. J2EE best practices patterns®.
They are mostly adaptations or straight uses of the GOF patterns.

Roadmap

Show the architectural forces in a distributed multi-tier environment
Show some specific problems and look for patterns.

Learn the J2EE pattern catalog

Discuss selected patterns

Take a look at the connector architecture

Resources: Hints and tips for J2EE.

[S T O P T o

A current student project e.g. tries to model composite objects with EJBs.

Questioning entity beans

Early ETB designs followed the ,,domain model* of design: Heavyweight business
objects included business logic and were also designed to be persisted through
some QQ-relational mapper. Lately the ,,service model” of design has been
favored with relatively dumb entity beans and the busmess logic contained in
session facades. . Bitter ETB*, by the author of ,,Bitter JTava™ raises some important
questions about entity beans and whether they are still useful. The author believes
that the domain model would lead to a cleaner and better maintamable architecture
— which i1s somewhat questionable as well. Some other issues:

-with transactions and security done by session facedes, what's left for Entity
Beans besides persistence? And couldn®t this be provided by a better mechanism
(topead ete.)?

-Making Entity beans both remote and local just confuses distributed computing

with local computing and falls into all the traps that Jim Waldo mentions in his
famous ,.note on distributed computing®.

You can find selected chapters of ,,Bitter ETB* on www.theserverside.com. In many
ways it reflects my own experiences with so called business objects — a concept that
was never easy to define or explain. T guess the result is that those heavyweight
business objects are simply overloaded with functionality.

Architectural Forces of J2EE

* Distributed Environment {naming, finding etc.)
+ Different physical architectures possible

* Persistence of important business objects

+ Different user interfaces and channels

+ Different backend systems

* Limits of components as not being programming language objects
(inheritance in EJBs etc.)

These forces result in endless possibilities to create applications which are either too
slow or cannot be mantained.

Basic physical components of J2EE

Client
tier

Each interface between tiers has umque problems. E.g. can the number of remote

Iterations
List
handling

Weh
tier

frorm
presentation
to business
logis

(Toaihterance)

Fernote calls

EJE
tier

different
hackends

perforna
nice of

storage

Enterprise
backend
tier

calls slow down the applicatoin. If too many internal interfaces are exposed to

clients we get an application that cannot be changed anymore. Large amounts of

objects stored in a relational DB can also become a performance problem.

The upper
half of the
pattern
catalog covers
mostly
presentation
and initial
access

The J2EE Pattern Catalog (1)

Apply Zems of Mo

B Interce:tl I'II Filtei

Cispa
Targe

teh to
tWiew

Centialize Control

¥

| Front ﬂhl"ltl'ﬁ-lltri

Dizpateh to
e to Helpars

Composite View

Delegate Processing

Composa View

‘e
|—I-| Front ﬂﬁl‘lll"ﬂll!ri
| Lightmeight Apess
[Control Business
- Frocassing Senvices

I
_ Dispatcher View
Ances

Business
Senices
L4

Yiew HElPEI’
Ciespatch to Celegate Frocessing

from Sub-Vigws

to Helpars
Front Controller
Aass
Control Business
Procassing Earvioas

| uses

Service To Worke J
Apcess
Business

l_SEmces

Business Delegate

Mediate
Businazz
l?mﬂssirtg

Locate

Services |

The J2EE Pattern Catalog (2)

AiEss Apcass

Buziness Businass

Sil'-'-il:iF—l Sariices

Business ﬂiliﬂl‘l’.‘.
bdadiate Lacate
Business SEI'I.I'ic'EE_
Froseszing
2 = Looate =
The lower half Session Facade Semmﬁ_.{ Service Lnr.:atnri
Df thﬂ pﬂttﬂl"ﬂ B odsl Obtain Access Business
It b Coame-graine Composite List
Cﬂtﬂlﬂg COVErRS Business Busginess Walue Objects
. Frocessing Component Encapsulate [rat
mostly business Dispatoh to 1
. Amymchmonous Transfer ijoct Assembler Value List Handler
logie, storage Prookssing
Encapsulata
and data ap
transfer 1ssues ¥ Encapsulat
Composite Entity —"""25:.'"“—] Transfer Object r Data
Encapsulate 000 fAocess
’““;"“ Cata Data Data Sources
Gunges
| .
—_'-E Service ﬁﬁﬁ\"ﬂ#ﬁ Data Access Dbj ect

Transter/Value Object Pattern

Forces : rernote bean acces expenstve, usually more attributes of an object needed.

Solution: Use a Transier Ohject to encapsulaie the business data. 4 single methoed call i used to send and
reirieve the Transkr Object When the client requests the enierprise hean for the husiness data, the
enierprise hean can consiruct the Transfer Object, populate it with its ativibute values, and pass it by value to

the client.

ValueObject

Chiemnt

B
M

BusinessObject

Creates

<<EntityEJB=»>

«<ZgssionEJBs=
BusinessSession

BusinessEntity

T
.

DatafccessOhject

Value objects can be generic (composite message pattern) or domain specific (in
this case they should be generated if possible). An interesting use is a partial value
object that can prohibit access to certan fields for certain users.

(http://java. sun. com/blueprints/corej2 eepatterns/Patterns/ TransferObject. html)

Business Delegate Pattern

Forces: Presentation-tier chents need access to business services but should not learn the internals of a business
service (how to find which objects). Tt is desirable to reduce networl: traffic between client and business services.

Solution: Use a Business Delegaie to reduce coupling hetween presentation-tier clients and husiness sexvices.
The Business Delegaie hides the underlying implementation details of the husiness sexvice, such as looJaup and
access details of the EJB architecture.

Client BusinessDelegate BusinessService

UsEs

LookKupSendce

Business Delegate 1s related to session facade which also hides internals. The
major point here is to allow the business logic to evolve and change without
affecting clients. Facedes can also enforce a common way to access a system.

Mainframe transaction sytems use those facades as general entry mechanism to the
system.

Service L.ocator Pattern

Forces: Lookup of ETB or J2EE ohjects iz expenste and tedions. JHDI needs to be asked for objects references,
finders nsed to find homes and homes finally used to create objects. Mo caching of factories.

Solution: Use a Sexvice Locator ohject to absiract all JNDI usage and to hide the complexities of initial
coniext creation, EJB home ohjectloolkup, and EJB ohject re-creation. Mulfiple chenis can reuse the Sexvice
Locator ohject to reduce code complexity, provide a single point of control, and improve performance by

providing a caching facility.
Cliemt z=5ingleton==
uses Servicelocator | ~ crestes -
USRS |
I
|
W
InitialContext
uses
uses T
IJuL3upI
N
uses -
1sendceFaciory
looksup or creates

.......................... BUsiNESsSEMNACE &= — — — — — — = — |

Service locator is simply a convemence pattern that allows caching of repeatedly
uses factories. Once you have created you first EJB hello-world® you know how
tedious the ereation of objects through JTNDI/finders/factories can be.

J2EE Architecture Patterns

Application servers

Enterprise information systems

A system like J2EE uses a lot of patterns internally. We will look at one example:
The Java Connector Architecture. It solves the problem of integrating different
backend systems with application servers. from: Will Farrell, Introduction to the
J2EE Connector Architecture, www.ibm.com/developerworks

Main JCA Components

Application Servers
Client API
Kesource adapters
—__\' .-‘f
._-"_'--. -\--"'-__ ;

— - =

Swtem Coniract

Enterprise information system

Resource adapters are usually written by EIS providers. They need to guarantee
the system contract with the application. In other words: the system contract
defines a protocol of mterfaces that the resource adapter needs to implement. A
client APT is only a higher level interface that allows a more convenient access to
the backends. The system contract includes flow of transaction, security and
pooling information.

System contracts

System contracts define the connection between the apphcation server and the EIS. The EIS
side of the system contractis implemented by a resource adapfer -- a system-level software

driver specific to the EIS. The application server and the resource adapter collaborate by
means of the system contract to provide secure, robust, scalable access to the EIS.

Three types of system contracts are defined:

+ The connechion management confract enables physical connections to the EIS and
provides a mechanism for the application server to pool those connections,

« The transaction management contract supports access to an EIS in a transactional
context. Transactions can be managed by the application server, providing transactions
that incorporate other resources besides the EIS, or they can be internal to the EIS
resource manager. in which case no transaction manager is required.

The secunty contract supports secure access to the EIS.

Will Farrell, Introduction to the J2EE Connector Architecture,
www.ibm.com/developerworks

System Contract Architecture

The application ‘ Application Component |
SErver can
intercept calls to (N (h
the resource
L]
adapter because : | : :
ConnectionManager |- | ConnectionFactory | | Connection |

the RA objects
implement app.

server interface -'—-E ManagedConnectionFactory]
(template/hook Server Services 1

pattcrn). Chents =-|l ManagedConnection J
do not get real A

Y

CDI]IIECtiDIl | ConnectionEveniListener |r=-'

objects, only
proxies to

managed Y
connection

Application Server Resource Server

]] Enterprise Information System
objects in the P d)

ERA.

Installing Connectors

deploy code:
connector with
iplementation classes 1es
and deployrent public static void main(String[] args) throws WamingBxception {
descriptor

Properfies propertiles = new Propertiesi);

properties.puk {Context. INITIAL COMTEXT FACTCRY, INITIAL CONTEXT FACTORY) ;
Initialcontext context = new InitialContext (properties);
HelloWorldInteractionSpecImpl ispec = new HelloWorldInteractilonSpecImpl();
ispec.zetFunctionName (HelloWworldInteracticnspec.SAY HELLO FUNCTICN) ;
context.bind("jca/Hel loWworldIspec", ispec);

Depending on vour tooling vou need not write this code by yourself. A
deploytool will use information from the deployment desenptor to
automatically install your new connector.

Using Connectors

Initialcontext context = new InitialContext();
Connect lonFactory cxfactory =
\Connect lonFactory) context,lookup("ava:comp,/env/HelloWorld");
client lookup Recordractory vecordractory = cxFactory.qetRecordractory();
code: IndexedRecord input =
recordractory.createIndexadRecord (Hellowor ldIndexedRecord. INFUT) ;
Indexedrecord output =
recordfactory. createIndexedrecord (Hellowor 1dIndexedrecord, CUTRUT)

First a ConnectionFactory needs to be found. Then special connections can
be created from it. All lookup 1s done through INDI — a good example how
a naming service decouples clients and service providers. BTW: there 1s a
nice JNDI browser available from sourceforge.com.

Resources (1)

Adam Bien, J2EE Patterns, Entwurfsmuster fiir J2ZEE. Am besten
einzelne pattern herausgreifen und bearbeiten.

Adam Bien, Enterprise Java Frameworks, Das Zusammenspiel der
Java-Architekturen. Einfithrung in Framework Technology am
Beispiel J2EE

Asgorted links to J2EE patterns:
http:/fwww javaworld. com/javaworld/jw-06-2002/w-0607-

j2eepattern.html and hitp://www.javaworld. com/javaworld/jw-01-
2002/jw-0111-facade.html

Improve your application's workflow with the Dispatcher design
pattern and 2SL http://www.javaworld.com/javaworld/pw-10-
2001/jw-1019-digpatcher.html?

Resources (2)

Implement a Data Access Object pattern framework
http://chick.idg.email-publisher.com/maaah3RaaRIW0a9JUqgkb/

JI2EE Architecture and Development Introduction to the J2EE
Platform - JDC (Monica Pawlan)

Still probably the best short introduction even
though 1t 15 from the last year.

Portals: The main portal to all of JZEE.
egpecially useful i1s the page

with links to all specifications (JMS, EJB, XML, etc., FAQs and
SDKs.

For quality articles on all serverside processing and free books on
EJB patterns:

Resources (3)

Introduction News & Articles A walking tour of J2EE

J2EE Tutorial - jsc
J2EE Platform Quiz — JDC
Writing J2EE
Enterprise Apps — jsc
J2EE:
Developing Multi-Tier Enterprise Applications — JR

Draft of J2EE Connector Architecture — jsc

Resources (4)

Books: What beginners need is an overview of the whole architecture and
its components and the best practices and patterns needed to develop
something. The J2EE architecture has enough complexity to warrant a
design pattern driven approach. The whole (free) book on J2EE:

Professional Java Server Programming J2EE, 1.3 Edition by
Subrahmanyam Allamaraju (Editor), et al Aimed at the working developer
or IT manager tackling server-side and Web-based enterprise Java
applications, Professional Java Server Programming J2EE 1.3 Edition
offers a truly excellent guide to the fast-changing world of today's Java 2
Enterprise Edition (J2EE) APIs and programming techniques....

Don't start with J2EE without design patterns for it: Core J2EE Patterns:
Best Practices and Design Strategies by Deepak Alur, John Crupi, Dan
Malks EJB Design Patterns: Advanced Patterns, Processes, and Idioms
von Floyd Marinescu

Resources ()

« Bitter EJB. Selected chapters at www.theserverside.com

very good.

